paysages3d/lib_paysages/atmosphere/bruneton.c

357 lines
12 KiB
C
Raw Normal View History

#include "public.h"
/*
* Atmospheric scattering, based on E. Bruneton and F.Neyret work.
* http://evasion.inrialpes.fr/~Eric.Bruneton/
*/
#if 0
#include <math.h>
#define TRANSMITTANCE_NON_LINEAR
#define INSCATTER_NON_LINEAR
#define FIX
static const double Rg = 6360.0;
static const double Rt = 6420.0;
static const double RL = 6421.0;
static const double exposure = 0.4;
static const float ISun = 100.0;
// Rayleigh
static const double HR = 8.0;
static const Color betaR = {5.8e-3, 1.35e-2, 3.31e-2, 1.0};
// Mie
// DEFAULT
static const double HM = 1.2;
/*static const vec3 betaMSca = vec3(4e-3);
static const vec3 betaMEx = betaMSca / 0.9;*/
static const double mieG = 0.8;
// CLEAR SKY
/*static const float HM = 1.2;
static const vec3 betaMSca = vec3(20e-3);
static const vec3 betaMEx = betaMSca / 0.9;
static const float mieG = 0.76;*/
// PARTLY CLOUDY
/*static const float HM = 3.0;
static const vec3 betaMSca = vec3(3e-3);
static const vec3 betaMEx = betaMSca / 0.9;
static const float mieG = 0.65;*/
#define step(_a_,_b_) ((_a_) < (_b_) ? 0 : 1)
#define max(_a_,_b_) ((_a_) < (_b_) ? (_a_) : (_b_))
#define sign(_a_) ((_a_) < 0.0 ? -1.0 : ((_a_) > 0.0 ? 1.0 : 0.0))
/* Rayleigh phase function */
static double _phaseFunctionR(double mu)
{
return (3.0 / (16.0 * M_PI)) * (1.0 + mu * mu);
}
/* Mie phase function */
static double _phaseFunctionM(double mu)
{
return 1.5 * 1.0 / (4.0 * M_PI) * (1.0 - mieG * mieG) * pow(1.0 + (mieG * mieG) - 2.0 * mieG * mu, -3.0 / 2.0) * (1.0 + mu * mu) / (2.0 + mieG * mieG);
}
/* approximated single Mie scattering (cf. approximate Cm in paragraph "Angular precision") */
static Color _getMie(Color rayMie)
{
double value = rayMie.a / max(rayMie.r, 1e-4) * (betaR.r / betaR); /* TODO divide by a vector ? */
rayMie.r *= value;
rayMie.g *= value;
rayMie.b *= value;
rayMie.a = 1.0;
return rayMie;
}
/* optical depth for ray (r,mu) of length d, using analytic formula
(mu=cos(view zenith angle)), intersections with ground ignored
H=height scale of exponential density function */
static double _opticalDepth(double H, double r, double mu, double d)
{
double a = sqrt((0.5 / H) * r);
double ax = a * (mu);
double ay = a * (mu + d / r);
double axs = sign(ax);
double ays = sign(ay);
double axq = ax * ax;
double ayq = ay * ay;
double x = ays > axs ? exp(axq) : 0.0;
double yx = axs / (2.3193 * fabs(ax) + sqrt(1.52 * axq + 4.0));
double yy = ays / (2.3193 * fabs(ay) + sqrt(1.52 * ayq + 4.0)) * exp(-d / H * (d / (2.0 * r) + mu));
return sqrt((6.2831 * H) * r) * exp((Rg - r) / H) * (x + yx - yy);
}
static Color _texture4D(sampler3D table, float r, float mu, float muS, float nu)
{
float H = sqrt(Rt * Rt - Rg * Rg);
float rho = sqrt(r * r - Rg * Rg);
#ifdef INSCATTER_NON_LINEAR
float rmu = r * mu;
float delta = rmu * rmu - r * r + Rg * Rg;
vec4 cst = rmu < 0.0 && delta > 0.0 ? vec4(1.0, 0.0, 0.0, 0.5 - 0.5 / float(RES_MU)) : vec4(-1.0, H * H, H, 0.5 + 0.5 / float(RES_MU));
float uR = 0.5 / float(RES_R) + rho / H * (1.0 - 1.0 / float(RES_R));
float uMu = cst.w + (rmu * cst.x + sqrt(delta + cst.y)) / (rho + cst.z) * (0.5 - 1.0 / float(RES_MU));
// paper formula
//float uMuS = 0.5 / float(RES_MU_S) + max((1.0 - exp(-3.0 * muS - 0.6)) / (1.0 - exp(-3.6)), 0.0) * (1.0 - 1.0 / float(RES_MU_S));
// better formula
float uMuS = 0.5 / float(RES_MU_S) + (atan(max(muS, -0.1975) * tan(1.26 * 1.1)) / 1.1 + (1.0 - 0.26)) * 0.5 * (1.0 - 1.0 / float(RES_MU_S));
#else
float uR = 0.5 / float(RES_R) + rho / H * (1.0 - 1.0 / float(RES_R));
float uMu = 0.5 / float(RES_MU) + (mu + 1.0) / 2.0 * (1.0 - 1.0 / float(RES_MU));
float uMuS = 0.5 / float(RES_MU_S) + max(muS + 0.2, 0.0) / 1.2 * (1.0 - 1.0 / float(RES_MU_S));
#endif
float lerp = (nu + 1.0) / 2.0 * (float(RES_NU) - 1.0);
float uNu = floor(lerp);
lerp = lerp - uNu;
return texture3D(table, vec3((uNu + uMuS) / float(RES_NU), uMu, uR)) * (1.0 - lerp) +
texture3D(table, vec3((uNu + uMuS + 1.0) / float(RES_NU), uMu, uR)) * lerp;
}
/* transmittance(=transparency) of atmosphere for ray (r,mu) of length d
(mu=cos(view zenith angle)), intersections with ground ignored
uses analytic formula instead of transmittance texture */
static Vector3 _analyticTransmittance(double r, double mu, double d)
{
return exp(-betaR * _opticalDepth(HR, r, mu, d) - betaMEx * _opticalDepth(HM, r, mu, d));
}
/* inscattered light along ray x+tv, when sun in direction s (=S[L]-T(x,x0)S[L]|x0) */
static Color _inscatter(Vector3* x, double* t, Vector3 v, Vector3 s, double* _r, double* _mu, Color* attenuation)
{
Color result;
double r = v3Norm(x);
double mu = v3Dot(x, v) / r;
double d = -r * mu - sqrt(r * r * (mu * mu - 1.0) + Rt * Rt);
if (d > 0.0)
{ // if x in space and ray intersects atmosphere
// move x to nearest intersection of ray with top atmosphere boundary
x += d * v;
t -= d;
mu = (r * mu + d) / Rt;
r = Rt;
}
if (r <= Rt)
{ // if ray intersects atmosphere
double nu = v3Dot(v, s);
double muS = v3Dot(x, s) / r;
double phaseR = _phaseFunctionR(nu);
double phaseM = _phaseFunctionM(nu);
vec4 inscatter = max(texture4D(inscatterSampler, r, mu, muS, nu), 0.0);
if (t > 0.0)
{
Vector3 x0 = v3Add(x, v3Scale(v, t));
double r0 = v3Norm(x0);
double rMu0 = v3Dot(x0, v);
double mu0 = rMu0 / r0;
double muS0 = v3Dot(x0, s) / r0;
#ifdef FIX
// avoids imprecision problems in transmittance computations based on textures
*attenuation = _analyticTransmittance(r, mu, t);
#else
*attenuation = _transmittance(r, mu, v, x0);
#endif
if (r0 > Rg + 0.01)
{
// computes S[L]-T(x,x0)S[L]|x0
inscatter = max(inscatter - attenuation.rgbr * texture4D(inscatterSampler, r0, mu0, muS0, nu), 0.0);
#ifdef FIX
// avoids imprecision problems near horizon by interpolating between two points above and below horizon
const float EPS = 0.004;
float muHoriz = -sqrt(1.0 - (Rg / r) * (Rg / r));
if (abs(mu - muHoriz) < EPS)
{
float a = ((mu - muHoriz) + EPS) / (2.0 * EPS);
mu = muHoriz - EPS;
r0 = sqrt(r * r + t * t + 2.0 * r * t * mu);
mu0 = (r * mu + t) / r0;
vec4 inScatter0 = texture4D(inscatterSampler, r, mu, muS, nu);
vec4 inScatter1 = texture4D(inscatterSampler, r0, mu0, muS0, nu);
vec4 inScatterA = max(inScatter0 - attenuation.rgbr * inScatter1, 0.0);
mu = muHoriz + EPS;
r0 = sqrt(r * r + t * t + 2.0 * r * t * mu);
mu0 = (r * mu + t) / r0;
inScatter0 = texture4D(inscatterSampler, r, mu, muS, nu);
inScatter1 = texture4D(inscatterSampler, r0, mu0, muS0, nu);
vec4 inScatterB = max(inScatter0 - attenuation.rgbr * inScatter1, 0.0);
inscatter = mix(inScatterA, inScatterB, a);
}
#endif
}
}
#ifdef FIX
// avoids imprecision problems in Mie scattering when sun is below horizon
inscatter.w *= smoothstep(0.00, 0.02, muS);
#endif
result = max(inscatter.rgb * phaseR + getMie(inscatter) * phaseM, 0.0);
}
else
{ // x in space and ray looking in space
result = COLOR_BLACK;
}
*_r = r;
*_mu = mu;
result.r *= ISun;
result.g *= ISun;
result.b *= ISun;
result.a = 1.0;
return result;
}
/*ground radiance at end of ray x+tv, when sun in direction s
*attenuated bewteen ground and viewer (=R[L0]+R[L*]) */
/*static Color _groundColor(Vector3 x, double t, Vector3 v, Vector3 s, double r, double mu, Color attenuation)
{
Color result;
if (t > 0.0)
{ // if ray hits ground surface
// ground reflectance at end of ray, x0
Vector3 x0 = v3Add(x, v3Scale(v, t));
float r0 = v3Norm(x0);
Vector3 n = v3Scale(x0, 1.0 / r0);
vec2 coords = vec2(atan(n.y, n.x), acos(n.z)) * vec2(0.5, 1.0) / M_PI + vec2(0.5, 0.0);
Color reflectance;
if (r0 > Rg + 0.01)
{
reflectance = vec4(0.4, 0.4, 0.4, 0.0);
}
else
{
reflectance = texture2D(reflectanceSampler, coords) * vec4(0.2, 0.2, 0.2, 1.0);
}
// direct sun light (radiance) reaching x0
float muS = v3Dot(n, s);
Color sunLight = _transmittanceWithShadow(r0, muS);
// precomputed sky light (irradiance) (=E[L*]) at x0
Color groundSkyLight = irradiance(irradianceSampler, r0, muS);
// light reflected at x0 (=(R[L0]+R[L*])/T(x,x0))
Color groundColor = reflectance.rgb * (max(muS, 0.0) * sunLight + groundSkyLight) * ISun / M_PI;
// water specular color due to sunLight
if (reflectance.w > 0.0)
{
vec3 h = normalize(s - v);
float fresnel = 0.02 + 0.98 * pow(1.0 - dot(-v, h), 5.0);
float waterBrdf = fresnel * pow(max(dot(h, n), 0.0), 150.0);
groundColor += reflectance.w * max(waterBrdf, 0.0) * sunLight * ISun;
}
result = attenuation * groundColor; //=R[L0]+R[L*]
}
else
{ // ray looking at the sky
return COLOR_BLACK;
}
return result;
}*/
static inline void _getTransmittanceUV(double r, double mu, double* u, double* v)
{
#ifdef TRANSMITTANCE_NON_LINEAR
*v = sqrt((r - Rg) / (Rt - Rg));
*u = atan((mu + 0.15) / (1.0 + 0.15) * tan(1.5)) / 1.5;
#else
*v = (r - Rg) / (Rt - Rg);
*u = (mu + 0.15) / (1.0 + 0.15);
#endif
}
/* transmittance(=transparency) of atmosphere for infinite ray (r,mu)
(mu=cos(view zenith angle)), intersections with ground ignored */
static Color _transmittance(double r, double mu)
{
double u, v;
_getTransmittanceUV(r, mu, u, v);
return texture2D(transmittanceSampler, uv).rgb;
}
/* transmittance(=transparency) of atmosphere for infinite ray (r,mu)
(mu=cos(view zenith angle)), or zero if ray intersects ground */
static Color _transmittanceWithShadow(double r, double mu)
{
return mu < -sqrt(1.0 - (Rg / r) * (Rg / r)) ? COLOR_BLACK : _transmittance(r, mu);
}
/* direct sun light for ray x+tv, when sun in direction s (=L0) */
static Color _sunColor(Vector3 x, double t, Vector3 v, Vector3 s, double r, double mu)
{
if (t > 0.0)
{
return COLOR_BLACK;
}
else
{
Color transmittance = r <= Rt ? _transmittanceWithShadow(r, mu) : COLOR_WHITE; // T(x,xo)
double isun = step(cos(M_PI / 180.0), v3Dot(v, s)) * ISun; // Lsun
return transmittance * isun; // Eq (9)
}
}
static Color _hdr(Color c1, Color c2, Color c3)
{
Color L = {c1.r + c2.r + c3.r, c1.g + c2.g + c3.g, c1.b + c2.b + c3.b, 1.0};
L = L * exposure;
L.r = L.r < 1.413 ? pow(L.r * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.r);
L.g = L.g < 1.413 ? pow(L.g * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.g);
L.b = L.b < 1.413 ? pow(L.b * 0.38317, 1.0 / 2.2) : 1.0 - exp(-L.b);
return L;
}
Color brunetonGetSkyColor(AtmosphereDefinition* definition, Vector3 eye, Vector3 direction, Vector3 sun_position)
{
Vector3 x = {0.0, Rg + eye.y, 0.0};
Vector3 v = v3Normalize(direction);
Vector3 s = v3Normalize(v3Sub(sun_position, eye));
double r = v3Norm(x);
double mu = v3Dot(x, v) / r;
double t = -r * mu - sqrt(r * r * (mu * mu - 1.0) + Rg * Rg);
Vector3 g = {0.0, 0.0, Rg + 10.0};
g = v3Sub(x, g);
double a = v.x * v.x + v.y * v.y - v.z * v.z;
double b = 2.0 * (g.x * v.x + g.y * v.y - g.z * v.z);
double c = g.x * g.x + g.y * g.y - g.z * g.z;
double d = -(b + sqrt(b * b - 4.0 * a * c)) / (2.0 * a);
int cone = d > 0.0 && fabs(x.z + d * v.z - Rg) <= 10.0;
if (t > 0.0)
{
if (cone && d < t)
{
t = d;
}
}
else if (cone)
{
t = d;
}
Vector3 attenuation;
Color inscatterColor = _inscatter(x, t, v, s, &r, &mu, &attenuation); //S[L]-T(x,xs)S[l]|xs
/*Color groundColor = _groundColor(x, t, v, s, r, mu, attenuation); //R[L0]+R[L*]*/
Color groundColor = COLOR_BLACK;
Color sunColor = _sunColor(x, t, v, s, r, mu); //L0
return _hdr(sunColor, groundColor, inscatterColor); // Eq (16)
}
#else
Color brunetonGetSkyColor(AtmosphereDefinition* definition, Vector3 eye, Vector3 direction, Vector3 sun_position)
{
return COLOR_BLACK;
}
#endif