paysages : Started clouds refactoring with unit tests (WIP).

git-svn-id: https://subversion.assembla.com/svn/thunderk/paysages@576 b1fd45b6-86a6-48da-8261-f70d1f35bdcc
This commit is contained in:
Michaël Lemaire 2013-05-18 21:43:19 +00:00 committed by ThunderK
parent 6420103652
commit 3fdb42ba0e
14 changed files with 629 additions and 317 deletions

View file

@ -32,7 +32,8 @@ debug:
release: release:
make BUILDMODE=release all make BUILDMODE=release all
tests: all tests:
make BUILDMODE=${BUILDMODE} all
LD_LIBRARY_PATH=${BUILDPATH} CK_DEFAULT_TIMEOUT=30 ${BUILDPATH}/paysages-tests LD_LIBRARY_PATH=${BUILDPATH} CK_DEFAULT_TIMEOUT=30 ${BUILDPATH}/paysages-tests
run_cli: all run_cli: all

View file

@ -0,0 +1,66 @@
#include "clo_density.h"
#include "../tools.h"
double cloudsGetLayerCoverage(CloudsLayerDefinition* layer, Vector3 location)
{
if (layer->base_coverage == 0.0)
{
return 0.0;
}
else
{
double coverage = noiseGet2DTotal(layer->_coverage_noise, location.x / layer->shape_scaling, location.z / layer->shape_scaling);
coverage -= (1.0 - layer->base_coverage);
coverage *= curveGetValue(layer->_coverage_by_altitude, (location.y - layer->lower_altitude) / layer->thickness);
return (coverage <= 0.0) ? 0.0 : coverage;
}
}
double cloudsGetLayerDensity(CloudsLayerDefinition* layer, Vector3 location, double coverage)
{
if (coverage == 0.0)
{
return 0.0;
}
else if (coverage == 1.0)
{
return 1.0;
}
else
{
double density = noiseGet3DTotal(layer->_shape_noise, location.x / layer->shape_scaling, location.y / layer->shape_scaling, location.z / layer->shape_scaling);
density -= (0.5 - coverage);
return (density <= 0.0) ? 0.0 : density;
}
}
static double _fakeGetDensity(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location)
{
UNUSED(layer);
UNUSED(renderer);
UNUSED(location);
return 0.0;
}
void cloudsBindFakeDensityToRenderer(CloudsRenderer* renderer)
{
renderer->getLayerDensity = _fakeGetDensity;
}
static double _realGetDensity(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location)
{
UNUSED(renderer);
double coverage = cloudsGetLayerCoverage(layer, location);
return cloudsGetLayerDensity(layer, location, coverage);
}
void cloudsBindRealDensityToRenderer(CloudsRenderer* renderer)
{
renderer->getLayerDensity = _realGetDensity;
}

View file

@ -0,0 +1,45 @@
#ifndef _PAYSAGES_CLOUDS_DENSITY_H_
#define _PAYSAGES_CLOUDS_DENSITY_H_
#include "public.h"
/**
* Coverage/density management in a cloud layer.
*/
#ifdef __cplusplus
extern "C"
{
#endif
/**
* Get the local coverage of a cloud layer [0.0;1.0]
*
* 0.0 means no cloud is present.
* 1.0 means full layer.
*/
double cloudsGetLayerCoverage(CloudsLayerDefinition* layer, Vector3 location);
/**
* Get the local density of a cloud layer at a given point [0.0;1.0].
*
* 0.0 means no cloud is present.
* 1.0 means full density (deep inside cloud).
*/
double cloudsGetLayerDensity(CloudsLayerDefinition* layer, Vector3 location, double coverage);
/*
* Bind fake density functions to a renderer.
*/
void cloudsBindFakeDensityToRenderer(CloudsRenderer* renderer);
/*
* Bind real density functions to a renderer.
*/
void cloudsBindRealDensityToRenderer(CloudsRenderer* renderer);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -3,6 +3,7 @@
#include <stdlib.h> #include <stdlib.h>
#include "../tools.h" #include "../tools.h"
#include "../renderer.h" #include "../renderer.h"
#include "clo_density.h"
/******************** Fake ********************/ /******************** Fake ********************/
static int _fakeAlterLight(Renderer* renderer, LightDefinition* light, Vector3 location) static int _fakeAlterLight(Renderer* renderer, LightDefinition* light, Vector3 location)
@ -23,21 +24,6 @@ static Color _fakeGetColor(Renderer* renderer, Color base, Vector3 start, Vector
return base; return base;
} }
static CloudsInfo _fakeGetLayerInfo(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location)
{
UNUSED(renderer);
UNUSED(layer);
UNUSED(location);
CloudsInfo result;
result.inside = 0;
result.density = 0.0;
result.distance_to_edge = 1.0;
return result;
}
/******************** Real ********************/ /******************** Real ********************/
/*static int _cmpLayer(const void* layer1, const void* layer2) /*static int _cmpLayer(const void* layer1, const void* layer2)
{ {
@ -89,7 +75,8 @@ static CloudsRenderer* _createRenderer()
result->getColor = _fakeGetColor; result->getColor = _fakeGetColor;
result->alterLight = (FuncLightingAlterLight)_fakeAlterLight; result->alterLight = (FuncLightingAlterLight)_fakeAlterLight;
result->getLayerInfo = _fakeGetLayerInfo;
cloudsBindFakeDensityToRenderer(result);
return result; return result;
} }
@ -106,7 +93,8 @@ static void _bindRenderer(Renderer* renderer, CloudsDefinition* definition)
renderer->clouds->getColor = _getColor; renderer->clouds->getColor = _getColor;
renderer->clouds->alterLight = (FuncLightingAlterLight)_alterLight; renderer->clouds->alterLight = (FuncLightingAlterLight)_alterLight;
renderer->clouds->getLayerInfo = cloudsGetLayerInfo;
cloudsBindRealDensityToRenderer(renderer->clouds);
lightingManagerRegisterFilter(renderer->lighting, (FuncLightingAlterLight)_alterLight, renderer); lightingManagerRegisterFilter(renderer->lighting, (FuncLightingAlterLight)_alterLight, renderer);
} }

View file

@ -4,6 +4,7 @@
* Clouds tools. * Clouds tools.
*/ */
#include "clo_walking.h"
#include "../renderer.h" #include "../renderer.h"
#include "../tools.h" #include "../tools.h"
@ -46,179 +47,6 @@ static inline Vector3 _getNormal(CloudsLayerDefinition* layer, Vector3 position,
return v3Normalize(result); return v3Normalize(result);
} }
/**
* Optimize the search limits in a layer.
*
* @param layer The cloud layer
* @param start Start of the search to optimize
* @param end End of the search to optimize
* @return 0 if the search is useless
*/
static int _optimizeSearchLimits(CloudsLayerDefinition* layer, Vector3* start, Vector3* end)
{
Vector3 diff;
if (start->y > layer->lower_altitude + layer->thickness)
{
if (end->y >= layer->lower_altitude + layer->thickness)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
if (end->y < layer->lower_altitude)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude - end->y) / diff.y));
}
}
}
else if (start->y < layer->lower_altitude)
{
if (end->y <= layer->lower_altitude)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
if (end->y >= layer->lower_altitude + layer->thickness)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude + layer->thickness - end->y) / diff.y));
}
}
}
else /* start is inside layer */
{
diff = v3Sub(*end, *start);
if (end->y > layer->lower_altitude + layer->thickness)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
}
else if (end->y < layer->lower_altitude)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
}
}
/* TODO Limit the search length */
return 1;
}
/**
* Go through the cloud layer to find segments (parts of the lookup that are likely to contain cloud).
*
* @param definition The cloud layer
* @param renderer The renderer environment
* @param start Start position of the lookup (already optimized)
* @param direction Normalized direction of the lookup
* @param max_segments Maximum number of segments to collect
* @param max_inside_length Maximum length to spend inside the cloud
* @param max_total_length Maximum lookup length
* @param inside_length Resulting length inside cloud (sum of all segments length)
* @param total_length Resulting lookup length
* @param out_segments Allocated space to fill found segments
* @return Number of segments found
*/
static int _getPrimarySegments(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 start, Vector3 direction, int max_segments, double max_inside_length, double max_total_length, double* inside_length, double* total_length, CloudSegment* out_segments)
{
int inside, segment_count;
double current_total_length, current_inside_length;
double step_length, segment_length;
Vector3 walker, step, segment_start;
CloudsInfo info;
double render_precision;
if (max_segments <= 0)
{
return 0;
}
render_precision = 1.005 - 0.01 * (double)(renderer->render_quality * renderer->render_quality);
if (render_precision > max_total_length / 10.0)
{
render_precision = max_total_length / 10.0;
}
else if (render_precision < max_total_length / 10000.0)
{
render_precision = max_total_length / 10000.0;
}
segment_count = 0;
current_total_length = 0.0;
current_inside_length = 0.0;
segment_length = 0.0;
walker = start;
info = renderer->clouds->getLayerInfo(renderer, definition, start);
inside = info.inside;
step = v3Scale(direction, render_precision);
do
{
walker = v3Add(walker, step);
step_length = v3Norm(step);
current_total_length += step_length;
if (current_total_length >= max_total_length || current_inside_length > max_inside_length)
{
info.distance_to_edge = 0.0;
info.inside = 0;
}
else
{
info = renderer->clouds->getLayerInfo(renderer, definition, walker);
}
if (info.inside)
{
if (inside)
{
/* inside the cloud */
segment_length += step_length;
current_inside_length += step_length;
}
else
{
/* entering the cloud */
segment_length = step_length;
segment_start = walker;
current_inside_length += segment_length;
/* TODO Refine entry position */
inside = 1;
}
}
else
{
if (inside)
{
/* exiting the cloud */
segment_length += step_length;
current_inside_length += step_length;
out_segments->start = segment_start;
out_segments->end = walker;
out_segments->length = segment_length;
out_segments++;
if (++segment_count >= max_segments)
{
break;
}
/* TODO Refine exit position */
inside = 0;
}
}
step = v3Scale(direction, (info.distance_to_edge < render_precision) ? render_precision : info.distance_to_edge);
} while (inside || (walker.y <= definition->lower_altitude + definition->thickness + 0.001 && walker.y >= definition->lower_altitude - 0.001 && current_total_length < max_total_length && current_inside_length < max_inside_length));
*total_length = current_total_length;
*inside_length = current_inside_length;
return segment_count;
}
static Color _applyLayerLighting(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 location, double detail) static Color _applyLayerLighting(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 location, double detail)
{ {
Vector3 normal; Vector3 normal;
@ -262,32 +90,22 @@ static Color _applyLayerLighting(CloudsLayerDefinition* definition, Renderer* re
Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end) Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end)
{ {
int segment_count; int segment_count;
double max_length, total_length, inside_length;
Vector3 direction;
Color col; Color col;
CloudSegment segments[MAX_SEGMENT_COUNT]; CloudPrimarySegment segments[MAX_SEGMENT_COUNT];
if (!_optimizeSearchLimits(definition, &start, &end)) segment_count = cloudsGetLayerPrimarySegments(renderer, definition, start, end, MAX_SEGMENT_COUNT, segments);
{
return base;
}
direction = v3Sub(end, start);
max_length = v3Norm(direction);
direction = v3Normalize(direction);
segment_count = _getPrimarySegments(definition, renderer, start, direction, MAX_SEGMENT_COUNT, definition->transparencydepth * (double)renderer->render_quality, max_length, &inside_length, &total_length, segments);
/* TODO Crawl in segments for render */ /* TODO Crawl in segments for render */
col = definition->material.base; col = definition->material.base;
if (definition->transparencydepth == 0 || inside_length >= definition->transparencydepth) col.a = 0.0;
/*if (definition->transparencydepth == 0 || inside_length >= definition->transparencydepth)
{ {
col.a = 1.0; col.a = 1.0;
} }
else else
{ {
col.a = inside_length / definition->transparencydepth; col.a = inside_length / definition->transparencydepth;
} }*/
col = renderer->atmosphere->applyAerialPerspective(renderer, start, col).final; col = renderer->atmosphere->applyAerialPerspective(renderer, start, col).final;
@ -298,10 +116,10 @@ Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer*
Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light) Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light)
{ {
double inside_depth, total_depth, factor; /*double inside_depth, total_depth, factor;
CloudSegment segments[MAX_SEGMENT_COUNT]; CloudSegment segments[MAX_SEGMENT_COUNT];
if (!_optimizeSearchLimits(definition, &location, &light_location)) if (!cloudsOptimizeWalkingBounds(definition, &location, &light_location))
{ {
return light; return light;
} }
@ -325,93 +143,7 @@ Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* render
light.r = light.r * factor; light.r = light.r * factor;
light.g = light.g * factor; light.g = light.g * factor;
light.b = light.b * factor; light.b = light.b * factor;*/
return light; return light;
} }
/*
* Get the coverage factor at the given location [0.0;1.0].
* 0.0 means no cloud is present.
* 1.0 means full layer.
*/
static inline double _getLayerCoverage(CloudsLayerDefinition* layer, double x, double z)
{
if (layer->base_coverage == 0.0)
{
return 0.0;
}
else
{
double coverage = noiseGet2DTotal(layer->_coverage_noise, x / layer->shape_scaling, z / layer->shape_scaling);
coverage -= (1.0 - layer->base_coverage);
return (coverage <= 0.0) ? 0.0 : coverage;
}
}
/*
* Get the local density factor at the given location [0.0;1.0].
* 0.0 means no cloud is present.
* 1.0 means full density (deep inside cloud).
*/
static inline double _getLayerDensity(CloudsLayerDefinition* layer, Vector3 location, double coverage)
{
if (coverage == 0.0)
{
return 0.0;
}
else if (coverage == 1.0)
{
return 1.0;
}
else
{
double density = noiseGet3DTotal(layer->_shape_noise, location.x / layer->shape_scaling, location.y / layer->shape_scaling, location.z / layer->shape_scaling);
density -= (0.5 - coverage);
return (density <= 0.0) ? 0.0 : density;
}
}
CloudsInfo cloudsGetLayerInfo(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location)
{
CloudsInfo result;
UNUSED(renderer);
result.density = 0.0;
result.distance_to_edge = 0.1;
/* Get coverage info */
double coverage = _getLayerCoverage(layer, location.x, location.z);
if (coverage <= 0.0)
{
/* TODO Distance to edge */
}
else
{
/* Apply altitude to coverage */
coverage *= curveGetValue(layer->_coverage_by_altitude, (location.y - layer->lower_altitude) / layer->thickness);
if (coverage <= 0.0)
{
/* TODO Distance to edge */
}
else
{
/* Get local density */
result.density = _getLayerDensity(layer, location, coverage);
if (result.density <= 0)
{
/* TODO Distance to edge */
}
else
{
/* TODO Distance to edge */
}
}
}
result.inside = (result.density > 0.0);
return result;
}

View file

@ -0,0 +1,157 @@
#include "clo_walking.h"
#include "../renderer.h"
int cloudsOptimizeWalkingBounds(CloudsLayerDefinition* layer, Vector3* start, Vector3* end)
{
Vector3 diff;
if (start->y > layer->lower_altitude + layer->thickness)
{
if (end->y >= layer->lower_altitude + layer->thickness)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
if (end->y < layer->lower_altitude)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude - end->y) / diff.y));
}
}
}
else if (start->y < layer->lower_altitude)
{
if (end->y <= layer->lower_altitude)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
if (end->y >= layer->lower_altitude + layer->thickness)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude + layer->thickness - end->y) / diff.y));
}
}
}
else /* start is inside layer */
{
diff = v3Sub(*end, *start);
if (end->y > layer->lower_altitude + layer->thickness)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
}
else if (end->y < layer->lower_altitude)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
}
}
/* TODO Limit the search length */
return 1;
}
int cloudsGetLayerPrimarySegments(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 start, Vector3 end, int max_segments, CloudPrimarySegment* out_segments)
{
int inside, segment_count;
double step_length, segment_length;
Vector3 diff, walker, segment_start;
double render_precision, density;
double diff_length, progress;
if (max_segments <= 0)
{
return 0;
}
if (!cloudsOptimizeWalkingBounds(layer, &start, &end))
{
return 0;
}
diff = v3Sub(end, start);
diff_length = v3Norm(diff);
if (diff_length < 0.000001)
{
return 0;
}
render_precision = 1.005 - 0.01 * (double)(renderer->render_quality * renderer->render_quality);
/*if (render_precision > max_total_length / 10.0)
{
render_precision = max_total_length / 10.0;
}
else if (render_precision < max_total_length / 10000.0)
{
render_precision = max_total_length / 10000.0;
}*/
segment_count = 0;
segment_length = 0.0;
density = renderer->clouds->getLayerDensity(renderer, layer, start);
progress = 0.0;
step_length = render_precision;
inside = (density > 0.0);
do
{
progress += step_length;
walker = v3Add(start, v3Scale(diff, progress / diff_length));
if (progress >= diff_length)
{
density = 0.0;
}
else
{
density = renderer->clouds->getLayerDensity(renderer, layer, walker);
}
if (density > 0.0)
{
if (inside)
{
/* inside the cloud */
segment_length += step_length;
}
else
{
/* entering the cloud */
segment_length = step_length;
segment_start = v3Add(start, v3Scale(diff, (progress - step_length) / diff_length));
/* TODO Refine entry position */
inside = 1;
}
}
else
{
if (inside)
{
/* exiting the cloud */
segment_length += step_length;
out_segments->enter = segment_start;
out_segments->exit = walker;
out_segments->length = segment_length;
out_segments++;
if (++segment_count >= max_segments)
{
break;
}
/* TODO Refine exit position */
inside = 0;
}
}
/* step = v3Scale(direction, (info.distance_to_edge < render_precision) ? render_precision : info.distance_to_edge); */
}
while (inside || (walker.y <= layer->lower_altitude + layer->thickness + 0.001 && walker.y >= layer->lower_altitude - 0.001 && progress < diff_length));
return segment_count;
}

View file

@ -0,0 +1,50 @@
#ifndef _PAYSAGES_CLOUDS_WALKING_H_
#define _PAYSAGES_CLOUDS_WALKING_H_
#include "public.h"
#include "../tools/euclid.h"
/**
* Functions to walk through a cloud layer.
*/
#ifdef __cplusplus
extern "C"
{
#endif
typedef struct
{
Vector3 enter;
Vector3 exit;
double length;
} CloudPrimarySegment;
/**
* Optimize the search limits in a layer.
*
* @param layer The cloud layer
* @param start Start of the search to optimize
* @param end End of the search to optimize
* @return 0 if the search is useless
*/
int cloudsOptimizeWalkingBounds(CloudsLayerDefinition* layer, Vector3* start, Vector3* end);
/**
* Go through the cloud layer to find segments (parts of the lookup that are likely to contain cloud).
*
* @param renderer The renderer environment
* @param layer The cloud layer
* @param start Start position of the lookup
* @param end End position of the lookup
* @param max_segments Maximum number of segments to collect
* @param out_segments Allocated space to fill found segments
* @return Number of segments found
*/
int cloudsGetLayerPrimarySegments(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 start, Vector3 end, int max_segments, CloudPrimarySegment* out_segments);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -6,18 +6,9 @@
#define CLOUDS_MAX_LAYERS 6 #define CLOUDS_MAX_LAYERS 6
#define MAX_SEGMENT_COUNT 100 #define MAX_SEGMENT_COUNT 100
typedef struct
{
Vector3 start;
Vector3 end;
double length;
} CloudSegment;
void cloudsLayerValidateDefinition(CloudsLayerDefinition* definition); void cloudsLayerValidateDefinition(CloudsLayerDefinition* definition);
Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light); Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light);
Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end); Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end);
CloudsInfo cloudsGetLayerInfo(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location);
#endif #endif

View file

@ -59,15 +59,8 @@ typedef struct
Layers* layers; Layers* layers;
} CloudsDefinition; } CloudsDefinition;
typedef struct
{
int inside;
double density;
double distance_to_edge;
} CloudsInfo;
typedef Color (*FuncCloudsGetColor)(Renderer* renderer, Color base, Vector3 start, Vector3 end); typedef Color (*FuncCloudsGetColor)(Renderer* renderer, Color base, Vector3 start, Vector3 end);
typedef CloudsInfo (*FuncCloudsGetLayerInfo)(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location); typedef double (*FuncCloudsGetLayerDensity)(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location);
typedef struct typedef struct
{ {
@ -75,7 +68,7 @@ typedef struct
FuncCloudsGetColor getColor; FuncCloudsGetColor getColor;
FuncLightingAlterLight alterLight; FuncLightingAlterLight alterLight;
FuncCloudsGetLayerInfo getLayerInfo; FuncCloudsGetLayerDensity getLayerDensity;
} CloudsRenderer; } CloudsRenderer;

View file

@ -77,6 +77,11 @@ extern Vector3 VECTOR_SOUTH;
extern Vector3 VECTOR_EAST; extern Vector3 VECTOR_EAST;
extern Vector3 VECTOR_WEST; extern Vector3 VECTOR_WEST;
static inline Vector3 v3(double x, double y, double z)
{
Vector3 result = {x, y, z};
return result;
};
void v3Save(PackStream* stream, Vector3* v); void v3Save(PackStream* stream, Vector3* v);
void v3Load(PackStream* stream, Vector3* v); void v3Load(PackStream* stream, Vector3* v);
Vector3 v3Translate(Vector3 v1, double x, double y, double z); Vector3 v3Translate(Vector3 v1, double x, double y, double z);

View file

@ -35,10 +35,30 @@ static inline int _double_not_equals(double x, double y)
{ {
return fabs(x - y) >= 0.00000000001; return fabs(x - y) >= 0.00000000001;
} }
static inline int _double_greater(double x, double y)
{
return _double_not_equals(x, y) || (x > y);
}
static inline int _double_greater_or_equal(double x, double y)
{
return _double_equals(x, y) || (x >= y);
}
static inline int _double_less(double x, double y)
{
return _double_not_equals(x, y) || (x < y);
}
static inline int _double_less_or_equal(double x, double y)
{
return _double_equals(x, y) || (x <= y);
}
#define _ck_assert_double(F, X, O, Y) ck_assert_msg(F(X, Y), "Assertion '"#X#O#Y"' failed: "#X"=%f, "#Y"=%f", X, Y) #define _ck_assert_double(F, X, O, Y) ck_assert_msg(F(X, Y), "Assertion '"#X#O#Y"' failed: "#X"=%f, "#Y"=%f", X, Y)
#define ck_assert_double_eq(X, Y) _ck_assert_double(_double_equals, X, ==, Y) #define ck_assert_double_eq(X, Y) _ck_assert_double(_double_equals, X, ==, Y)
#define ck_assert_double_ne(X, Y) _ck_assert_double(_double_not_equals, X, !=, Y) #define ck_assert_double_ne(X, Y) _ck_assert_double(_double_not_equals, X, !=, Y)
#define ck_assert_double_gt(X, Y) _ck_assert_double(_double_greater, X, >, Y)
#define ck_assert_double_lt(X, Y) _ck_assert_double(_double_greater_or_equal, X, >=, Y)
#define ck_assert_double_gte(X, Y) _ck_assert_double(_double_less, X, <, Y)
#define ck_assert_double_lte(X, Y) _ck_assert_double(_double_less_or_equal, X, <=, Y)
/***** Generic comparison assertions *****/ /***** Generic comparison assertions *****/
@ -56,4 +76,9 @@ static inline char* _ck_gen_##_type_##_str(char* buffer, _type_ X) { \
static char _ck_gen_strbuf1[101]; static char _ck_gen_strbuf1[101];
static char _ck_gen_strbuf2[101]; static char _ck_gen_strbuf2[101];
/***** Some builtin comparisons *****/
#define ck_assert_double_in_range(_double_, _x_, _y_) ck_assert_double_gte(_double_, _x_);ck_assert_double_lte(_double_, _y_)
#define ck_assert_vector_values(_vector_, _x_, _y_, _z_) ck_assert_double_eq(_vector_.x, _x_);ck_assert_double_eq(_vector_.y, _y_);ck_assert_double_eq(_vector_.z, _z_)
#endif #endif

View file

@ -1,21 +1,30 @@
#include <check.h> #include <check.h>
#include <stdlib.h> #include <stdlib.h>
#include "rendering/main.h"
extern void test_euclid_case(Suite* s); extern void test_euclid_case(Suite* s);
extern void test_camera_case(Suite* s); extern void test_camera_case(Suite* s);
extern void test_clouds_case(Suite* s);
int main(int argc, char** argv) int main(int argc, char** argv)
{ {
int number_failed; int number_failed;
Suite *s = suite_create("rendering"); Suite *s = suite_create("rendering");
paysagesInit();
/* TODO Find a way to automate this */ /* TODO Find a way to automate this */
test_euclid_case(s); test_euclid_case(s);
test_camera_case(s); test_camera_case(s);
test_clouds_case(s);
SRunner *sr = srunner_create(s); SRunner *sr = srunner_create(s);
srunner_run_all(sr, CK_NORMAL); srunner_run_all(sr, CK_NORMAL);
number_failed = srunner_ntests_failed(sr); number_failed = srunner_ntests_failed(sr);
srunner_free(sr); srunner_free(sr);
paysagesQuit();
return (number_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE; return (number_failed == 0) ? EXIT_SUCCESS : EXIT_FAILURE;
} }

View file

@ -2,8 +2,6 @@
#include "rendering/camera.h" #include "rendering/camera.h"
#define _checkVector(_vector_, _x_, _y_, _z_) ck_assert_double_eq(_vector_.x, _x_);ck_assert_double_eq(_vector_.y, _y_);ck_assert_double_eq(_vector_.z, _z_)
START_TEST(test_camera_definition) START_TEST(test_camera_definition)
{ {
CameraDefinition* cam; CameraDefinition* cam;
@ -12,8 +10,8 @@ START_TEST(test_camera_definition)
cameraSetLocationCoords(cam, 0.0, 1.0, 1.0); cameraSetLocationCoords(cam, 0.0, 1.0, 1.0);
cameraSetTargetCoords(cam, 0.0, 0.0, 0.0); cameraSetTargetCoords(cam, 0.0, 0.0, 0.0);
_checkVector(cameraGetLocation(cam), 0.0, 1.0, 1.0); ck_assert_vector_values(cameraGetLocation(cam), 0.0, 1.0, 1.0);
_checkVector(cameraGetTarget(cam), 0.0, 0.0, 0.0); ck_assert_vector_values(cameraGetTarget(cam), 0.0, 0.0, 0.0);
cameraDeleteDefinition(cam); cameraDeleteDefinition(cam);
} }

252
src/testing/test_clouds.c Normal file
View file

@ -0,0 +1,252 @@
#include "testing/common.h"
#include "rendering/renderer.h"
#include "rendering/tools.h"
#include "rendering/clouds/public.h"
#include "rendering/clouds/clo_density.h"
#include "rendering/clouds/clo_walking.h"
START_TEST(test_clouds_density)
{
/* Setup */
double x, y, z;
CloudsLayerDefinition* layer;
layer = cloudsGetLayerType().callback_create();
/* Test default coverage (empty) */
for (x = -10.0; x < 10.0; x += 10.0)
{
for (y = -10.0; y < 10.0; y += 10.0)
{
for (z = -10.0; z < 10.0; z += 10.0)
{
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, y, z)), 0.0);
}
}
}
/* Test coverage by altitude */
layer->base_coverage = 1.0;
layer->lower_altitude = -1.0;
layer->thickness = 2.0;
cloudsGetLayerType().callback_validate(layer);
layer->base_coverage = 1.0;
noiseForceValue(layer->_coverage_noise, 1.0);
for (x = -10.0; x < 10.0; x += 10.0)
{
for (z = -10.0; z < 10.0; z += 10.0)
{
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 0.0, z)), 1.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 0.5, z)), 0.5);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 1.0, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 1.5, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -0.5, z)), 0.5);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -1.0, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -1.5, z)), 0.0);
}
}
layer->base_coverage = 0.5;
noiseForceValue(layer->_coverage_noise, 1.0);
for (x = -10.0; x < 10.0; x += 10.0)
{
for (z = -10.0; z < 10.0; z += 10.0)
{
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 0.0, z)), 0.5);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 0.5, z)), 0.25);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 1.0, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 1.5, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -0.5, z)), 0.25);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -1.0, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -1.5, z)), 0.0);
}
}
layer->base_coverage = 1.0;
noiseForceValue(layer->_coverage_noise, 0.5);
for (x = -10.0; x < 10.0; x += 10.0)
{
for (z = -10.0; z < 10.0; z += 10.0)
{
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 0.0, z)), 0.5);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 0.5, z)), 0.25);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 1.0, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, 1.5, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -0.5, z)), 0.25);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -1.0, z)), 0.0);
ck_assert_double_eq(cloudsGetLayerCoverage(layer, v3(x, -1.5, z)), 0.0);
}
}
/* TODO Test fake renderer */
/* TODO Test real renderer */
/* Teardown */
cloudsGetLayerType().callback_delete(layer);
}
END_TEST
START_TEST(test_clouds_walking_boundaries)
{
Vector3 start, end;
int result;
CloudsLayerDefinition* layer;
layer = cloudsGetLayerType().callback_create();
layer->base_coverage = 1.0;
layer->lower_altitude = -1.0;
layer->thickness = 2.0;
cloudsGetLayerType().callback_validate(layer);
/* Basic cases */
start = v3(0.0, -3.0, 0.0);
end = v3(0.0, -2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, 2.0, 0.0);
end = v3(0.0, 3.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, -2.0, 0.0);
end = v3(0.0, 2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 1);
ck_assert_vector_values(start, 0.0, -1.0, 0.0);
ck_assert_vector_values(end, 0.0, 1.0, 0.0);
start = v3(0.0, 0.0, 0.0);
end = v3(0.0, 2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 1);
ck_assert_vector_values(start, 0.0, 0.0, 0.0);
ck_assert_vector_values(end, 0.0, 1.0, 0.0);
start = v3(0.0, -2.0, 0.0);
end = v3(0.0, 0.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 1);
ck_assert_vector_values(start, 0.0, -1.0, 0.0);
ck_assert_vector_values(end, 0.0, 0.0, 0.0);
/* Basic cases (inverted) */
start = v3(0.0, -2.0, 0.0);
end = v3(0.0, -3.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, 3.0, 0.0);
end = v3(0.0, 2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, 2.0, 0.0);
end = v3(0.0, -2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 1);
ck_assert_vector_values(start, 0.0, 1.0, 0.0);
ck_assert_vector_values(end, 0.0, -1.0, 0.0);
start = v3(0.0, 2.0, 0.0);
end = v3(0.0, 0.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 1);
ck_assert_vector_values(start, 0.0, 1.0, 0.0);
ck_assert_vector_values(end, 0.0, 0.0, 0.0);
start = v3(0.0, 0.0, 0.0);
end = v3(0.0, -2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 1);
ck_assert_vector_values(start, 0.0, 0.0, 0.0);
ck_assert_vector_values(end, 0.0, -1.0, 0.0);
/* Horizontal cases */
start = v3(0.0, 2.0, 0.0);
end = v3(10.0, 2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, 1.00001, 0.0);
end = v3(10.0, 1.00001, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, -1.00001, 0.0);
end = v3(10.0, -1.00001, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, -2.0, 0.0);
end = v3(10.0, -2.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 0);
start = v3(0.0, 0.0, 0.0);
end = v3(10.0, 0.0, 0.0);
result = cloudsOptimizeWalkingBounds(layer, &start, &end);
ck_assert_int_eq(result, 1);
ck_assert_vector_values(start, 0.0, 0.0, 0.0);
ck_assert_vector_values(end, 10.0, 0.0, 0.0);
cloudsGetLayerType().callback_delete(layer);
}
END_TEST
static double _getLayerDensitySinX(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location)
{
UNUSED(renderer);
UNUSED(layer);
double density = sin(location.x * (2.0 * M_PI));
return (density > 0.0) ? density : 0.0;
}
START_TEST(test_clouds_primary_segments)
{
int segment_count, i;
CloudPrimarySegment segments[10];
CloudsLayerDefinition* layer;
layer = cloudsGetLayerType().callback_create();
layer->lower_altitude = -1.0;
layer->thickness = 2.0;
cloudsGetLayerType().callback_validate(layer);
Renderer* renderer;
renderer = rendererCreate();
renderer->render_quality = 8;
renderer->clouds->getLayerDensity = _getLayerDensitySinX;
segment_count = cloudsGetLayerPrimarySegments(renderer, layer, v3(-0.4, 0.0, 0.0), v3(1.9, 0.0, 0.0), 10, segments);
ck_assert_int_eq(segment_count, 2);
for (i = 0; i < segment_count; i++)
{
ck_assert_double_eq(segments[i].enter.y, 0.0);
ck_assert_double_eq(segments[i].enter.z, 0.0);
ck_assert_double_eq(segments[i].exit.y, 0.0);
ck_assert_double_eq(segments[i].exit.z, 0.0);
}
ck_assert_double_in_range(segments[0].enter.x, -0.5, 0.0);
ck_assert_double_in_range(segments[0].exit.x, 0.5, 1.0);
ck_assert_double_in_range(segments[0].length, 0.5, 1.5);
ck_assert_double_gte(segments[1].enter.x, segments[0].exit.x);
ck_assert_double_in_range(segments[1].enter.x, 0.5, 1.0);
ck_assert_double_in_range(segments[1].exit.x, 1.5, 2.0);
ck_assert_double_in_range(segments[1].length, 0.5, 1.5);
cloudsGetLayerType().callback_delete(layer);
rendererDelete(renderer);
}
END_TEST
START_TEST(test_clouds_preview_color)
{
Renderer* renderer = cloudsCreatePreviewColorRenderer();
/* TODO Test the density overriding */
rendererDelete(renderer);
}
END_TEST
TEST_CASE(clouds, test_clouds_density, test_clouds_walking_boundaries, test_clouds_primary_segments, test_clouds_preview_color)