paysages : Clouds refactoring (WIP).

git-svn-id: https://subversion.assembla.com/svn/thunderk/paysages@505 b1fd45b6-86a6-48da-8261-f70d1f35bdcc
This commit is contained in:
Michaël Lemaire 2013-01-22 20:50:37 +00:00 committed by ThunderK
parent 0d3906a93e
commit 5c7ba1d4fc
27 changed files with 1007 additions and 957 deletions

View file

@ -1,6 +1,5 @@
#include "formclouds.h"
#include "../lib_paysages/clouds.h"
#include "../lib_paysages/tools/color.h"
#include "../lib_paysages/tools/euclid.h"
#include "../lib_paysages/scenery.h"
@ -13,48 +12,34 @@ class PreviewCloudsCoverage:public BasePreview
public:
PreviewCloudsCoverage(QWidget* parent, CloudsLayerDefinition* layer):BasePreview(parent)
{
_renderer = rendererCreate();
_renderer->render_quality = 5;
//_renderer.applyLightStatus = _applyLightStatus;
_renderer = cloudsCreatePreviewCoverageRenderer();
_original_layer = layer;
_preview_layer = cloudsLayerCreateDefinition();
_preview_definition = (CloudsDefinition*)CloudsDefinitionClass.create();
configScaling(100.0, 1000.0, 20.0, 200.0);
}
~PreviewCloudsCoverage()
{
cloudsLayerDeleteDefinition(_preview_layer);
CloudsDefinitionClass.destroy(_preview_definition);
rendererDelete(_renderer);
}
protected:
Color getColor(double x, double y)
{
Vector3 eye, look;
eye.x = 0.0;
eye.y = scaling;
eye.z = -10.0 * scaling;
look.x = x * 0.01 / scaling;
look.y = -y * 0.01 / scaling - 0.3;
look.z = 1.0;
look = v3Normalize(look);
return cloudsApplyLayer(_preview_layer, COLOR_BLUE, _renderer, eye, v3Add(eye, v3Scale(look, 1000.0)));
return cloudsGetPreviewCoverage(_renderer, x, y, scaling);
}
void updateData()
{
cloudsLayerCopyDefinition(_original_layer, _preview_layer);
}
static Color _applyLightStatus(Renderer*, LightStatus*, Vector3, Vector3, SurfaceMaterial)
{
return COLOR_WHITE;
layersDeleteLayer(_preview_definition->layers, 0);
layersAddLayer(_preview_definition->layers, _original_layer);
CloudsRendererClass.bind(_renderer, _preview_definition);
}
private:
Renderer* _renderer;
CloudsLayerDefinition* _original_layer;
CloudsLayerDefinition* _preview_layer;
CloudsDefinition* _preview_definition;
};
class PreviewCloudsColor:public BasePreview
@ -62,92 +47,28 @@ class PreviewCloudsColor:public BasePreview
public:
PreviewCloudsColor(QWidget* parent, CloudsLayerDefinition* layer):BasePreview(parent)
{
LightDefinition light;
_original_layer = layer;
_preview_layer = cloudsLayerCreateDefinition();
_preview_definition = (CloudsDefinition*)CloudsDefinitionClass.create();
/*_lighting = lightingCreateDefinition();
light.color = COLOR_WHITE;
light.direction.x = -1.0;
light.direction.y = -1.0;
light.direction.z = 1.0;
light.direction = v3Normalize(light.direction);
light.filtered = 0;
light.masked = 1;
light.reflection = 1.0;
lightingAddLight(&_lighting, light);
lightingValidateDefinition(&_lighting);*/
_renderer = rendererCreate();
_renderer->render_quality = 8;
/*_renderer.alterLight = _alterLight;
_renderer.getLightStatus = _getLightStatus;*/
_renderer->customData[0] = _preview_layer;
//_renderer.customData[1] = &_lighting;
_renderer = cloudsCreatePreviewColorRenderer();
configScaling(0.5, 2.0, 0.1, 2.0);
}
protected:
Color getColor(double x, double y)
{
Vector3 start, end;
start.x = x * _preview_layer->thickness * 0.5;
start.y = -y * _preview_layer->thickness * 0.5;
start.z = _preview_layer->thickness * 0.5;
end.x = x * _preview_layer->thickness * 0.5;
end.y = -y * _preview_layer->thickness * 0.5;
end.z = -_preview_layer->thickness * 0.5;
return cloudsApplyLayer(_preview_layer, COLOR_BLUE, _renderer, start, end);
return cloudsGetPreviewColor(_renderer, x, y);
}
void updateData()
{
cloudsLayerCopyDefinition(_original_layer, _preview_layer);
//noiseForceValue(_preview_layer->shape_noise, 1.0);
_preview_layer->lower_altitude = -_preview_layer->thickness * 0.5;
//curveClear(_preview_layer->coverage_by_altitude);
_preview_layer->base_coverage = 1.0;
_preview_layer->_custom_coverage = _coverageFunc;
layersDeleteLayer(_preview_definition->layers, 0);
layersAddLayer(_preview_definition->layers, _original_layer);
CloudsRendererClass.bind(_renderer, _preview_definition);
}
private:
Renderer* _renderer;
CloudsLayerDefinition* _original_layer;
CloudsLayerDefinition* _preview_layer;
//LightingDefinition _lighting;
static double _coverageFunc(CloudsLayerDefinition* layer, Vector3 position)
{
double coverage = curveGetValue(layer->_coverage_by_altitude, position.y / layer->thickness + 0.5);
position.y = 0.0;
double dist = v3Norm(position);
if (dist >= layer->thickness * 0.5)
{
return 0.0;
}
else if (dist < layer->thickness * 0.4)
{
return coverage;
}
else
{
double density = 1.0 - (dist - (layer->thickness * 0.4)) / (layer->thickness * 0.1);
return (density < coverage) ? density : coverage;
}
}
/*static void _alterLight(Renderer* renderer, LightDefinition* light, Vector3 location)
{
light->color = cloudsLayerFilterLight((CloudsLayerDefinition*)renderer->customData[0], renderer, light->color, location, v3Scale(light->direction, -1000.0), v3Scale(light->direction, -1.0));
}
static void _getLightStatus(Renderer* renderer, LightStatus* status, Vector3 location)
{
lightingGetStatus((LightingDefinition*)renderer->customData[1], renderer, location, status);
}*/
CloudsDefinition* _preview_definition;
};
/**************** Form ****************/
@ -159,8 +80,8 @@ FormClouds::FormClouds(QWidget *parent):
addAutoPreset(tr("Stratocumulus"));
addAutoPreset(tr("Stratus"));
_definition = cloudsCreateDefinition();
_layer = cloudsLayerCreateDefinition();
_definition = (CloudsDefinition*)CloudsDefinitionClass.create();
_layer = (CloudsLayerDefinition*)cloudsGetLayerType().callback_create();
_previewCoverage = new PreviewCloudsCoverage(parent, _layer);
_previewColor = new PreviewCloudsColor(parent, _layer);
@ -171,10 +92,7 @@ FormClouds::FormClouds(QWidget *parent):
addInputDouble(tr("Lower altitude"), &_layer->lower_altitude, -10.0, 50.0, 0.5, 5.0);
addInputDouble(tr("Layer thickness"), &_layer->thickness, 0.0, 20.0, 0.1, 1.0);
addInputDouble(tr("Max coverage"), &_layer->base_coverage, 0.0, 1.0, 0.01, 0.1);
// addInputCurve(tr("Coverage by altitude"), _layer->_coverage_by_altitude, 0.0, 1.0, 0.0, 1.0, tr("Altitude in cloud layer"), tr("Coverage value"));
// addInputNoise(tr("Shape noise"), _layer->_shape_noise);
addInputDouble(tr("Shape scaling"), &_layer->shape_scaling, 3.0, 30.0, 0.3, 3.0);
// addInputNoise(tr("Edge noise"), _layer->_edge_noise);
addInputDouble(tr("Edge scaling"), &_layer->edge_scaling, 0.5, 5.0, 0.05, 0.5);
addInputDouble(tr("Edge length"), &_layer->edge_length, 0.0, 1.0, 0.01, 0.1);
addInputMaterial(tr("Material"), &_layer->material);
@ -183,40 +101,34 @@ FormClouds::FormClouds(QWidget *parent):
addInputDouble(tr("Light traversal depth"), &_layer->lighttraversal, 0.0, 10.0, 0.1, 1.0);
addInputDouble(tr("Minimum lighting"), &_layer->minimumlight, 0.0, 1.0, 0.01, 0.1);
setLayers(_definition.layers);
setLayers(_definition->layers);
}
void FormClouds::revertConfig()
{
sceneryGetClouds(&_definition);
sceneryGetClouds(_definition);
BaseFormLayer::revertConfig();
}
void FormClouds::applyConfig()
{
BaseFormLayer::applyConfig();
scenerySetClouds(&_definition);
}
void FormClouds::configChangeEvent()
{
cloudsLayerValidateDefinition(_layer);
BaseFormLayer::configChangeEvent();
scenerySetClouds(_definition);
}
void FormClouds::layerReadCurrentFrom(void* layer_definition)
{
cloudsLayerCopyDefinition((CloudsLayerDefinition*)layer_definition, _layer);
cloudsGetLayerType().callback_copy((CloudsLayerDefinition*)layer_definition, _layer);
}
void FormClouds::layerWriteCurrentTo(void* layer_definition)
{
cloudsLayerCopyDefinition(_layer, (CloudsLayerDefinition*)layer_definition);
cloudsGetLayerType().callback_copy(_layer, (CloudsLayerDefinition*)layer_definition);
}
void FormClouds::autoPresetSelected(int preset)
{
cloudsLayerAutoPreset(_layer, (CloudsPreset)preset);
cloudsAutoPreset(_layer, (CloudsPreset)preset);
BaseForm::autoPresetSelected(preset);
}

View file

@ -4,7 +4,7 @@
#include <QWidget>
#include "basepreview.h"
#include "baseformlayer.h"
#include "../lib_paysages/clouds.h"
#include "../lib_paysages/clouds/public.h"
class FormClouds : public BaseFormLayer
{
@ -22,11 +22,8 @@ protected:
virtual void layerWriteCurrentTo(void* layer_definition);
virtual void autoPresetSelected(int preset);
protected slots:
virtual void configChangeEvent();
private:
CloudsDefinition _definition;
CloudsDefinition* _definition;
CloudsLayerDefinition* _layer;
BasePreview* _previewCoverage;
BasePreview* _previewColor;

View file

@ -65,26 +65,11 @@ class PreviewTexturesColor:public BasePreview
public:
PreviewTexturesColor(QWidget* parent, TextureLayerDefinition* layer):BasePreview(parent)
{
LightDefinition light;
_original_layer = layer;
_preview_layer = texturesLayerCreateDefinition();
/*_lighting = lightingCreateDefinition();
light.color = COLOR_WHITE;
light.direction.x = 0.0;
light.direction.y = -0.4794;
light.direction.z = 0.8776;
light.filtered = 0;
light.masked = 0;
light.reflection = 1.0;
lightingAddLight(&_lighting, light);
lightingValidateDefinition(&_lighting);*/
_renderer = rendererCreate();
_renderer->render_quality = 3;
/*_renderer->getLightStatus = _getLightStatus;
_renderer->customData[0] = &_lighting;*/
_renderer->camera_location.x = 0.0;
_renderer->camera_location.y = 20.0;
_renderer->camera_location.z = 0.0;
@ -117,12 +102,6 @@ private:
Renderer* _renderer;
TextureLayerDefinition* _original_layer;
TextureLayerDefinition* _preview_layer;
//LightingDefinition _lighting;
/*static void _getLightStatus(Renderer* renderer, LightStatus* status, Vector3 location)
{
lightingGetStatus((LightingDefinition*)renderer->customData[0], renderer, location, status);
}*/
};
/**************** Form ****************/

View file

@ -1,9 +1,9 @@
BUILDMODE = debug
BUILDPATH = ../build/${BUILDMODE}
OBJPATH = ./obj/${BUILDMODE}
SOURCES = $(wildcard *.c atmosphere/*.c terrain/*.c tools/*.c)
SOURCES = $(wildcard *.c atmosphere/*.c clouds/*.c terrain/*.c tools/*.c)
OBJECTS = ${SOURCES:%.c=${OBJPATH}/%.o}
HEADERS = $(wildcard *.h atmosphere/*.h terrain/*.h tools/*.h shared/*.h)
HEADERS = $(wildcard *.h atmosphere/*.h clouds/*.h terrain/*.h tools/*.h shared/*.h)
RESULT = ${BUILDPATH}/libpaysages.so
LIBS = glib-2.0 gthread-2.0 IL ILU
CC_FLAGS = -Wall -fPIC -DHAVE_GLIB=1

View file

@ -19,7 +19,7 @@
/*********************** Constants ***********************/
#define WORLD_SCALING 0.05
#define GROUND_OFFSET 10.0
#define GROUND_OFFSET 0.5
static const double Rg = 6360.0;
static const double Rt = 6420.0;
static const double RL = 6421.0;
@ -27,7 +27,7 @@ static const double exposure = 0.4;
static const double ISun = 100.0;
static const double AVERAGE_GROUND_REFLECTANCE = 0.1;
#if 0
#if 1
#define RES_MU 128
#define RES_MU_S 32
#define RES_R 32
@ -825,6 +825,7 @@ static Color _getInscatterColor(Vector3* _x, double* _t, Vector3 v, Vector3 s, d
double r = v3Norm(*_x);
double mu = v3Dot(*_x, v) / r;
double d = -r * mu - sqrt(r * r * (mu * mu - 1.0) + Rt * Rt);
attenuation->x = attenuation->y = attenuation->z = 0.0;
if (d > 0.0)
{
/* if x in space and ray intersects atmosphere
@ -1218,7 +1219,7 @@ void brunetonGetLightingStatus(Renderer* renderer, LightStatus* status, Vector3
/*irradiance.color.r *= 100.0;
irradiance.color.g *= 100.0;
irradiance.color.b *= 100.0;*/
irradiance.direction = v3Scale(normal, -1.0);
irradiance.direction = VECTOR_DOWN;
irradiance.reflection = 0.0;
irradiance.altered = 0;

View file

@ -116,13 +116,6 @@ static Color _fakeGetSkyColor(Renderer* renderer, Vector3 direction)
UNUSED(direction);
return COLOR_WHITE;
}
static int _fakeGetSkydomeLights(Renderer* renderer, LightDefinition* lights, int max_lights)
{
UNUSED(renderer);
UNUSED(lights);
UNUSED(max_lights);
return 0;
}
static Color _getSkyColor(Renderer* renderer, Vector3 direction)
{

View file

@ -17,7 +17,7 @@ static Color _postProcessFragment(Renderer* renderer, Vector3 location, void* da
/* TODO Don't compute result->color if it's fully covered by clouds */
result = renderer->atmosphere->getSkyColor(renderer, v3Normalize(direction));
result = renderer->applyClouds(renderer, result, renderer->camera_location, v3Add(renderer->camera_location, v3Scale(direction, 10.0)));
result = renderer->clouds->getColor(renderer, result, renderer->camera_location, v3Add(renderer->camera_location, v3Scale(direction, 10.0)));
return result;
}

View file

@ -4,7 +4,6 @@
#include <stdlib.h>
#include <time.h>
#include "clouds.h"
#include "render.h"
#include "textures.h"
#include "scenery.h"
@ -15,7 +14,6 @@
void autoGenRealisticLandscape(int seed)
{
WaterDefinition water;
CloudsDefinition clouds;
TexturesDefinition textures;
TextureLayerDefinition* texture;
int layer;
@ -27,10 +25,10 @@ void autoGenRealisticLandscape(int seed)
srand(seed);
/* Cloud layer */
clouds = cloudsCreateDefinition();
layersAddLayer(clouds.layers, NULL);
scenerySetClouds(&clouds);
cloudsDeleteDefinition(&clouds);
CloudsDefinition* clouds = CloudsDefinitionClass.create();
layer = layersAddLayer(clouds->layers, NULL);
scenerySetClouds(clouds);
CloudsDefinitionClass.destroy(clouds);
/* Water */
water = waterCreateDefinition();

View file

@ -49,6 +49,7 @@ CameraDefinition cameraCreateDefinition()
void cameraDeleteDefinition(CameraDefinition* definition)
{
UNUSED(definition);
}
void cameraCopyDefinition(CameraDefinition* source, CameraDefinition* destination)

View file

@ -1,685 +0,0 @@
#include "clouds.h"
#include <string.h>
#include <stdlib.h>
#include <math.h>
#include "tools/color.h"
#include "tools/euclid.h"
#include "tools.h"
#define CLOUDS_MAX_LAYERS 6
#define MAX_SEGMENT_COUNT 30
typedef struct
{
Vector3 start;
Vector3 end;
double length;
} CloudSegment;
CloudsDefinition cloudsCreateDefinition()
{
CloudsDefinition result;
result.layers = layersCreate(cloudsGetLayerType(), CLOUDS_MAX_LAYERS);
return result;
}
void cloudsDeleteDefinition(CloudsDefinition* definition)
{
layersDelete(definition->layers);
}
void cloudsCopyDefinition(CloudsDefinition* source, CloudsDefinition* destination)
{
layersCopy(source->layers, destination->layers);
}
void cloudsValidateDefinition(CloudsDefinition* definition)
{
layersValidate(definition->layers);
}
void cloudsSave(PackStream* stream, CloudsDefinition* definition)
{
layersSave(stream, definition->layers);
}
void cloudsLoad(PackStream* stream, CloudsDefinition* definition)
{
layersLoad(stream, definition->layers);
}
static double _standardCoverageFunc(CloudsLayerDefinition* layer, Vector3 position)
{
if (position.y < layer->lower_altitude || position.y >= layer->lower_altitude + layer->thickness)
{
return 0.0;
}
else
{
return layer->base_coverage * curveGetValue(layer->_coverage_by_altitude, (position.y - layer->lower_altitude) / layer->thickness);
}
}
CloudsLayerDefinition* cloudsLayerCreateDefinition()
{
CloudsLayerDefinition* result;
result = malloc(sizeof(CloudsLayerDefinition));
result->_coverage_by_altitude = curveCreate();
result->_shape_noise = noiseCreateGenerator();
result->_edge_noise = noiseCreateGenerator();
result->_custom_coverage = _standardCoverageFunc;
cloudsLayerAutoPreset(result, CLOUDS_PRESET_CIRRUS);
return result;
}
void cloudsLayerDeleteDefinition(CloudsLayerDefinition* definition)
{
curveDelete(definition->_coverage_by_altitude);
noiseDeleteGenerator(definition->_shape_noise);
noiseDeleteGenerator(definition->_edge_noise);
free(definition);
}
void cloudsLayerAutoPreset(CloudsLayerDefinition* definition, CloudsPreset preset)
{
definition->material.base.r = 0.7;
definition->material.base.g = 0.7;
definition->material.base.b = 0.7;
definition->material.base.a = 1.0;
switch (preset)
{
case CLOUDS_PRESET_CIRRUS:
definition->type = CLOUDS_TYPE_CIRRUS;
definition->lower_altitude = 25.0;
definition->thickness = 2.0;
definition->material.reflection = 0.4;
definition->material.shininess = 0.5;
definition->hardness = 0.0;
definition->transparencydepth = 3.0;
definition->lighttraversal = 10.0;
definition->minimumlight = 0.6;
definition->shape_scaling = 8.0;
definition->edge_scaling = 2.0;
definition->edge_length = 0.8;
definition->base_coverage = 0.6;
break;
case CLOUDS_PRESET_CUMULUS:
definition->type = CLOUDS_TYPE_CUMULUS;
definition->lower_altitude = 15.0;
definition->thickness = 15.0;
definition->material.reflection = 0.5;
definition->material.shininess = 1.2;
definition->hardness = 0.25;
definition->transparencydepth = 1.5;
definition->lighttraversal = 8.0;
definition->minimumlight = 0.4;
definition->shape_scaling = 20.0;
definition->edge_scaling = 2.0;
definition->edge_length = 0.0;
definition->base_coverage = 0.7;
break;
case CLOUDS_PRESET_STRATOCUMULUS:
definition->type = CLOUDS_TYPE_STRATOCUMULUS;
definition->lower_altitude = 5.0;
definition->thickness = 6.0;
definition->material.reflection = 0.3;
definition->material.shininess = 0.8;
definition->hardness = 0.25;
definition->transparencydepth = 1.5;
definition->lighttraversal = 7.0;
definition->minimumlight = 0.4;
definition->shape_scaling = 10.0;
definition->edge_scaling = 0.8;
definition->edge_length = 0.3;
definition->base_coverage = 0.4;
break;
case CLOUDS_PRESET_STRATUS:
definition->type = CLOUDS_TYPE_STRATUS;
definition->lower_altitude = 3.0;
definition->thickness = 4.0;
definition->material.reflection = 0.1;
definition->material.shininess = 0.8;
definition->hardness = 0.1;
definition->transparencydepth = 3.0;
definition->lighttraversal = 10.0;
definition->minimumlight = 0.6;
definition->shape_scaling = 8.0;
definition->edge_scaling = 2.0;
definition->edge_length = 1.0;
definition->base_coverage = 0.4;
break;
default:
break;
}
cloudsLayerValidateDefinition(definition);
}
void cloudsLayerCopyDefinition(CloudsLayerDefinition* source, CloudsLayerDefinition* destination)
{
CloudsLayerDefinition temp;
temp = *destination;
*destination = *source;
destination->_shape_noise = temp._shape_noise;
noiseCopy(source->_shape_noise, destination->_shape_noise);
destination->_edge_noise = temp._edge_noise;
noiseCopy(source->_edge_noise, destination->_edge_noise);
destination->_coverage_by_altitude = temp._coverage_by_altitude;
curveCopy(source->_coverage_by_altitude, destination->_coverage_by_altitude);
}
void cloudsLayerValidateDefinition(CloudsLayerDefinition* definition)
{
if (definition->shape_scaling < 0.0001)
{
definition->shape_scaling = 0.00001;
}
if (definition->edge_scaling < 0.0001)
{
definition->edge_scaling = 0.00001;
}
if (definition->_custom_coverage == NULL)
{
definition->_custom_coverage = _standardCoverageFunc;
}
curveClear(definition->_coverage_by_altitude);
noiseClearLevels(definition->_shape_noise);
noiseClearLevels(definition->_edge_noise);
switch (definition->type)
{
case CLOUDS_TYPE_CIRRUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.5, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 3, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, 0.0);
noiseAddLevelsSimple(definition->_edge_noise, 4, 1.0, 1.0);
noiseSetFunctionParams(definition->_edge_noise, NOISE_FUNCTION_SIMPLEX, -0.2);
break;
case CLOUDS_TYPE_CUMULUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.1, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.4, 0.8);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.7, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 7, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, 0.4);
break;
case CLOUDS_TYPE_STRATOCUMULUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.2, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.5, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 2, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, 0.3);
noiseAddLevelsSimple(definition->_edge_noise, 8, 1.0, 1.0);
noiseSetFunctionParams(definition->_edge_noise, NOISE_FUNCTION_SIMPLEX, 0.5);
break;
case CLOUDS_TYPE_STRATUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.2, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.8, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 3, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, -0.3);
noiseAddLevelsSimple(definition->_edge_noise, 4, 1.0, 1.0);
noiseSetFunctionParams(definition->_edge_noise, NOISE_FUNCTION_SIMPLEX, -0.5);
break;
default:
break;
}
}
void _cloudsLayerSave(PackStream* stream, CloudsLayerDefinition* layer)
{
int clouds_type = (int)layer->type;
packWriteInt(stream, &clouds_type);
packWriteDouble(stream, &layer->lower_altitude);
packWriteDouble(stream, &layer->thickness);
curveSave(stream, layer->_coverage_by_altitude);
noiseSaveGenerator(stream, layer->_shape_noise);
noiseSaveGenerator(stream, layer->_edge_noise);
materialSave(stream, &layer->material);
packWriteDouble(stream, &layer->hardness);
packWriteDouble(stream, &layer->transparencydepth);
packWriteDouble(stream, &layer->lighttraversal);
packWriteDouble(stream, &layer->minimumlight);
packWriteDouble(stream, &layer->shape_scaling);
packWriteDouble(stream, &layer->edge_scaling);
packWriteDouble(stream, &layer->edge_length);
packWriteDouble(stream, &layer->base_coverage);
}
void _cloudsLayerLoad(PackStream* stream, CloudsLayerDefinition* layer)
{
int clouds_type;
packReadInt(stream, &clouds_type);
layer->type = (CloudsType)clouds_type;
packReadDouble(stream, &layer->lower_altitude);
packReadDouble(stream, &layer->thickness);
materialLoad(stream, &layer->material);
packReadDouble(stream, &layer->hardness);
packReadDouble(stream, &layer->transparencydepth);
packReadDouble(stream, &layer->lighttraversal);
packReadDouble(stream, &layer->minimumlight);
packReadDouble(stream, &layer->shape_scaling);
packReadDouble(stream, &layer->edge_scaling);
packReadDouble(stream, &layer->edge_length);
packReadDouble(stream, &layer->base_coverage);
cloudsLayerValidateDefinition(layer);
}
LayerType cloudsGetLayerType()
{
LayerType result;
result.callback_create = (LayerCallbackCreate)cloudsLayerCreateDefinition;
result.callback_delete = (LayerCallbackDelete)cloudsLayerDeleteDefinition;
result.callback_copy = (LayerCallbackCopy)cloudsLayerCopyDefinition;
result.callback_validate = (LayerCallbackValidate)cloudsLayerValidateDefinition;
result.callback_save = (LayerCallbackSave)_cloudsLayerSave;
result.callback_load = (LayerCallbackLoad)_cloudsLayerLoad;
return result;
}
static inline double _getDistanceToBorder(CloudsLayerDefinition* layer, Vector3 position)
{
double density, coverage, val;
val = noiseGet3DTotal(layer->_shape_noise, position.x / layer->shape_scaling, position.y / layer->shape_scaling, position.z / layer->shape_scaling) / noiseGetMaxValue(layer->_shape_noise);
coverage = layer->_custom_coverage(layer, position);
density = 0.5 * val - 0.5 + coverage;
if (density <= 0.0)
{
/* outside the main shape */
return density * layer->shape_scaling;
}
else
{
/* inside the main shape, using edge noise */
density /= coverage;
if (density < layer->edge_length)
{
density /= layer->edge_length;
val = 0.5 * noiseGet3DTotal(layer->_edge_noise, position.x / layer->edge_scaling, position.y / layer->edge_scaling, position.z / layer->edge_scaling) / noiseGetMaxValue(layer->_edge_noise);
val = val - 0.5 + density;
return val * (density * coverage * layer->shape_scaling + (1.0 - density) * layer->edge_scaling);
}
else
{
return density * coverage * layer->shape_scaling;
}
}
}
static inline Vector3 _getNormal(CloudsLayerDefinition* layer, Vector3 position, double detail)
{
Vector3 result = {0.0, 0.0, 0.0};
Vector3 dposition;
double val, dval;
val = _getDistanceToBorder(layer, position);
dposition.x = position.x + detail;
dposition.y = position.y;
dposition.z = position.z;
dval = val - _getDistanceToBorder(layer, dposition);
result.x += dval;
dposition.x = position.x - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.x -= dval;
dposition.x = position.x;
dposition.y = position.y + detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.y += dval;
dposition.y = position.y - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.y -= dval;
dposition.y = position.y;
dposition.z = position.z + detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.z += dval;
dposition.z = position.z - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.z -= dval;
return v3Normalize(result);
}
/**
* Optimize the search limits in a layer.
*
* @param layer The cloud layer
* @param start Start of the search to optimize
* @param end End of the search to optimize
* @return 0 if the search is useless
*/
static int _optimizeSearchLimits(CloudsLayerDefinition* layer, Vector3* start, Vector3* end)
{
Vector3 diff;
if (start->y > layer->lower_altitude + layer->thickness)
{
if (end->y >= layer->lower_altitude + layer->thickness)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
if (end->y < layer->lower_altitude)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude - end->y) / diff.y));
}
}
}
else if (start->y < layer->lower_altitude)
{
if (end->y <= layer->lower_altitude)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
if (end->y >= layer->lower_altitude + layer->thickness)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude + layer->thickness - end->y) / diff.y));
}
}
}
else /* start is inside layer */
{
diff = v3Sub(*end, *start);
if (end->y > layer->lower_altitude + layer->thickness)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
}
else if (end->y < layer->lower_altitude)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
}
}
/* TODO Limit the search length */
return 1;
}
/**
* Go through the cloud layer to find segments (parts of the lookup that are inside the cloud).
*
* @param definition The cloud layer
* @param renderer The renderer environment
* @param start Start position of the lookup (already optimized)
* @param direction Normalized direction of the lookup
* @param detail Level of noise detail required
* @param max_segments Maximum number of segments to collect
* @param max_inside_length Maximum length to spend inside the cloud
* @param max_total_length Maximum lookup length
* @param inside_length Resulting length inside cloud (sum of all segments length)
* @param total_length Resulting lookup length
* @param out_segments Allocated space to fill found segments
* @return Number of segments found
*/
static int _findSegments(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 start, Vector3 direction, double detail, int max_segments, double max_inside_length, double max_total_length, double* inside_length, double* total_length, CloudSegment* out_segments)
{
int inside, segment_count;
double current_total_length, current_inside_length;
double step_length, segment_length, remaining_length;
double noise_distance, last_noise_distance;
Vector3 walker, step, segment_start;
double render_precision;
if (max_segments <= 0)
{
return 0;
}
render_precision = 1.005 - 0.01 * (double)(renderer->render_quality * renderer->render_quality);
if (render_precision > max_total_length / 10.0)
{
render_precision = max_total_length / 10.0;
}
else if (render_precision < max_total_length / 10000.0)
{
render_precision = max_total_length / 10000.0;
}
segment_count = 0;
current_total_length = 0.0;
current_inside_length = 0.0;
segment_length = 0.0;
walker = start;
noise_distance = _getDistanceToBorder(definition, start) * render_precision;
inside = (noise_distance > 0.0) ? 1 : 0;
step = v3Scale(direction, render_precision);
do
{
walker = v3Add(walker, step);
step_length = v3Norm(step);
last_noise_distance = noise_distance;
noise_distance = _getDistanceToBorder(definition, walker) * render_precision;
current_total_length += step_length;
if (current_total_length >= max_total_length || current_inside_length > max_inside_length)
{
noise_distance = 0.0;
}
if (noise_distance > 0.0)
{
if (inside)
{
// inside the cloud
segment_length += step_length;
current_inside_length += step_length;
step = v3Scale(direction, (noise_distance < render_precision) ? render_precision : noise_distance);
}
else
{
// entering the cloud
inside = 1;
segment_length = step_length * noise_distance / (noise_distance - last_noise_distance);
segment_start = v3Add(walker, v3Scale(direction, -segment_length));
current_inside_length += segment_length;
step = v3Scale(direction, render_precision);
}
}
else
{
if (inside)
{
// exiting the cloud
remaining_length = step_length * last_noise_distance / (last_noise_distance - noise_distance);
segment_length += remaining_length;
current_inside_length += remaining_length;
out_segments->start = segment_start;
out_segments->end = v3Add(walker, v3Scale(direction, remaining_length - step_length));
out_segments->length = segment_length;
out_segments++;
if (++segment_count >= max_segments)
{
break;
}
inside = 0;
step = v3Scale(direction, render_precision);
}
else
{
// searching for a cloud
step = v3Scale(direction, (noise_distance > -render_precision) ? render_precision : -noise_distance);
}
}
} while (inside || (walker.y <= definition->lower_altitude + definition->thickness + 0.001 && walker.y >= definition->lower_altitude - 0.001 && current_total_length < max_total_length && current_inside_length < max_inside_length));
*total_length = current_total_length;
*inside_length = current_inside_length;
return segment_count;
}
static Color _applyLayerLighting(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 position, double detail)
{
Vector3 normal;
Color col1, col2;
LightStatus* lighting;
normal = _getNormal(definition, position, 3.0);
if (renderer->render_quality > 5)
{
normal = v3Add(normal, _getNormal(definition, position, 2.0));
normal = v3Add(normal, _getNormal(definition, position, 1.0));
}
if (renderer->render_quality > 5)
{
normal = v3Add(normal, _getNormal(definition, position, 0.5));
}
normal = v3Scale(v3Normalize(normal), definition->hardness);
lighting = lightingCreateStatus(renderer->lighting, position, renderer->camera_location);
renderer->atmosphere->getLightingStatus(renderer, lighting, normal, 0);
col1 = lightingApplyStatus(lighting, normal, &definition->material);
col2 = lightingApplyStatus(lighting, v3Scale(normal, -1.0), &definition->material);
lightingDeleteStatus(lighting);
col1.r = (col1.r + col2.r) / 2.0;
col1.g = (col1.g + col2.g) / 2.0;
col1.b = (col1.b + col2.b) / 2.0;
col1.a = (col1.a + col2.a) / 2.0;
return col1;
}
Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end)
{
int i, segment_count;
double max_length, detail, total_length, inside_length;
Vector3 direction;
Color col;
CloudSegment segments[MAX_SEGMENT_COUNT];
if (!_optimizeSearchLimits(definition, &start, &end))
{
return base;
}
direction = v3Sub(end, start);
max_length = v3Norm(direction);
direction = v3Normalize(direction);
detail = renderer->getPrecision(renderer, start) / definition->shape_scaling;
segment_count = _findSegments(definition, renderer, start, direction, detail, MAX_SEGMENT_COUNT, definition->transparencydepth * (double)renderer->render_quality, max_length, &inside_length, &total_length, segments);
for (i = segment_count - 1; i >= 0; i--)
{
col = _applyLayerLighting(definition, renderer, segments[i].start, detail);
col.a = 1.0;
col = renderer->atmosphere->applyAerialPerspective(renderer, start, col);
col.a = (segments[i].length >= definition->transparencydepth) ? 1.0 : (segments[i].length / definition->transparencydepth);
colorMask(&base, &col);
}
if (inside_length >= definition->transparencydepth)
{
col.a = 1.0;
}
return base;
}
/*static int _cmpLayer(const void* layer1, const void* layer2)
{
return (((CloudsLayerDefinition*)layer1)->lower_altitude > ((CloudsLayerDefinition*)layer2)->lower_altitude) ? -1 : 1;
}*/
Color cloudsApply(CloudsDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end)
{
int i, n;
n = layersCount(definition->layers);
if (n < 1)
{
return base;
}
/* TODO Iter layers in sorted order */
for (i = 0; i < n; i++)
{
base = cloudsApplyLayer(layersGetLayer(definition->layers, i), base, renderer, start, end);
}
return base;
}
Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light)
{
double inside_depth, total_depth, factor;
CloudSegment segments[MAX_SEGMENT_COUNT];
_optimizeSearchLimits(definition, &location, &light_location);
_findSegments(definition, renderer, location, direction_to_light, 0.1, MAX_SEGMENT_COUNT, definition->lighttraversal, v3Norm(v3Sub(light_location, location)), &inside_depth, &total_depth, segments);
if (definition->lighttraversal < 0.0001)
{
factor = 0.0;
}
else
{
factor = inside_depth / definition->lighttraversal;
if (factor > 1.0)
{
factor = 1.0;
}
}
factor = 1.0 - (1.0 - definition->minimumlight) * factor;
light.r = light.r * factor;
light.g = light.g * factor;
light.b = light.b * factor;
return light;
}
Color cloudsFilterLight(CloudsDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light)
{
int i, n;
/* TODO Iter layers in sorted order */
n = layersCount(definition->layers);
for (i = 0; i < n; i++)
{
light = cloudsLayerFilterLight(layersGetLayer(definition->layers, i), renderer, light, location, light_location, direction_to_light);
}
return light;
}

View file

@ -1,83 +0,0 @@
#ifndef _PAYSAGES_CLOUDS_H_
#define _PAYSAGES_CLOUDS_H_
#include "shared/types.h"
#include "layers.h"
#include "noise.h"
#include "renderer.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum
{
CLOUDS_TYPE_CIRRUS,
CLOUDS_TYPE_CUMULUS,
CLOUDS_TYPE_STRATOCUMULUS,
CLOUDS_TYPE_STRATUS
} CloudsType;
typedef enum
{
CLOUDS_PRESET_CIRRUS,
CLOUDS_PRESET_CUMULUS,
CLOUDS_PRESET_STRATOCUMULUS,
CLOUDS_PRESET_STRATUS
} CloudsPreset;
typedef struct CloudsLayerDefinition CloudsLayerDefinition;
typedef double (*CloudCoverageFunc)(CloudsLayerDefinition* definition, Vector3 position);
struct CloudsLayerDefinition
{
CloudsType type;
double lower_altitude;
double thickness;
double base_coverage;
double shape_scaling;
double edge_scaling;
double edge_length;
SurfaceMaterial material;
double hardness;
double transparencydepth;
double lighttraversal;
double minimumlight;
CloudCoverageFunc _custom_coverage;
Curve* _coverage_by_altitude;
NoiseGenerator* _shape_noise;
NoiseGenerator* _edge_noise;
};
typedef struct
{
Layers* layers;
} CloudsDefinition;
CloudsDefinition cloudsCreateDefinition();
void cloudsDeleteDefinition(CloudsDefinition* definition);
void cloudsCopyDefinition(CloudsDefinition* source, CloudsDefinition* destination);
void cloudsValidateDefinition(CloudsDefinition* definition);
void cloudsSave(PackStream* stream, CloudsDefinition* definition);
void cloudsLoad(PackStream* stream, CloudsDefinition* definition);
CloudsLayerDefinition* cloudsLayerCreateDefinition();
void cloudsLayerDeleteDefinition(CloudsLayerDefinition* definition);
void cloudsLayerAutoPreset(CloudsLayerDefinition* definition, CloudsPreset preset);
void cloudsLayerCopyDefinition(CloudsLayerDefinition* source, CloudsLayerDefinition* destination);
void cloudsLayerValidateDefinition(CloudsLayerDefinition* definition);
void cloudsLayerSetName(CloudsLayerDefinition* definition, const char* name);
LayerType cloudsGetLayerType();
Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end);
Color cloudsApply(CloudsDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end);
Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light);
Color cloudsFilterLight(CloudsDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -0,0 +1,205 @@
#include "private.h"
#include <stdlib.h>
/******************** Global definition ********************/
static void _validateDefinition(CloudsDefinition* definition)
{
layersValidate(definition->layers);
}
static CloudsDefinition* _createDefinition()
{
CloudsDefinition* definition = malloc(sizeof(CloudsDefinition));
definition->layers = layersCreate(cloudsGetLayerType(), CLOUDS_MAX_LAYERS);
return definition;
}
static void _deleteDefinition(CloudsDefinition* definition)
{
layersDelete(definition->layers);
free(definition);
}
static void _copyDefinition(CloudsDefinition* source, CloudsDefinition* destination)
{
layersCopy(source->layers, destination->layers);
}
static void _saveDefinition(PackStream* stream, CloudsDefinition* definition)
{
layersSave(stream, definition->layers);
}
static void _loadDefinition(PackStream* stream, CloudsDefinition* definition)
{
layersLoad(stream, definition->layers);
}
StandardDefinition CloudsDefinitionClass = {
(FuncObjectCreate)_createDefinition,
(FuncObjectDelete)_deleteDefinition,
(FuncObjectCopy)_copyDefinition,
(FuncObjectValidate)_validateDefinition,
(FuncObjectSave)_saveDefinition,
(FuncObjectLoad)_loadDefinition
};
/*** Layer definition ***/
void cloudsLayerValidateDefinition(CloudsLayerDefinition* definition)
{
if (definition->shape_scaling < 0.0001)
{
definition->shape_scaling = 0.00001;
}
if (definition->edge_scaling < 0.0001)
{
definition->edge_scaling = 0.00001;
}
curveClear(definition->_coverage_by_altitude);
noiseClearLevels(definition->_shape_noise);
noiseClearLevels(definition->_edge_noise);
switch (definition->type)
{
case CLOUDS_TYPE_CIRRUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.5, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 3, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, 0.0);
noiseAddLevelsSimple(definition->_edge_noise, 4, 1.0, 1.0);
noiseSetFunctionParams(definition->_edge_noise, NOISE_FUNCTION_SIMPLEX, -0.2);
break;
case CLOUDS_TYPE_CUMULUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.1, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.4, 0.8);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.7, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 7, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, 0.4);
break;
case CLOUDS_TYPE_STRATOCUMULUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.2, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.5, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 2, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, 0.3);
noiseAddLevelsSimple(definition->_edge_noise, 8, 1.0, 1.0);
noiseSetFunctionParams(definition->_edge_noise, NOISE_FUNCTION_SIMPLEX, 0.5);
break;
case CLOUDS_TYPE_STRATUS:
curveQuickAddPoint(definition->_coverage_by_altitude, 0.0, 0.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.2, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 0.8, 1.0);
curveQuickAddPoint(definition->_coverage_by_altitude, 1.0, 0.0);
noiseAddLevelsSimple(definition->_shape_noise, 3, 1.0, 1.0);
noiseSetFunctionParams(definition->_shape_noise, NOISE_FUNCTION_SIMPLEX, -0.3);
noiseAddLevelsSimple(definition->_edge_noise, 4, 1.0, 1.0);
noiseSetFunctionParams(definition->_edge_noise, NOISE_FUNCTION_SIMPLEX, -0.5);
break;
default:
break;
}
}
CloudsLayerDefinition* cloudsLayerCreateDefinition()
{
CloudsLayerDefinition* result;
result = malloc(sizeof(CloudsLayerDefinition));
result->_coverage_by_altitude = curveCreate();
result->_shape_noise = noiseCreateGenerator();
result->_edge_noise = noiseCreateGenerator();
cloudsAutoPreset(result, CLOUDS_PRESET_CIRRUS);
return result;
}
void cloudsLayerDeleteDefinition(CloudsLayerDefinition* definition)
{
curveDelete(definition->_coverage_by_altitude);
noiseDeleteGenerator(definition->_shape_noise);
noiseDeleteGenerator(definition->_edge_noise);
free(definition);
}
void cloudsLayerCopyDefinition(CloudsLayerDefinition* source, CloudsLayerDefinition* destination)
{
CloudsLayerDefinition temp;
temp = *destination;
*destination = *source;
destination->_shape_noise = temp._shape_noise;
noiseCopy(source->_shape_noise, destination->_shape_noise);
destination->_edge_noise = temp._edge_noise;
noiseCopy(source->_edge_noise, destination->_edge_noise);
destination->_coverage_by_altitude = temp._coverage_by_altitude;
curveCopy(source->_coverage_by_altitude, destination->_coverage_by_altitude);
}
void _cloudsLayerSave(PackStream* stream, CloudsLayerDefinition* layer)
{
int clouds_type = (int)layer->type;
packWriteInt(stream, &clouds_type);
packWriteDouble(stream, &layer->lower_altitude);
packWriteDouble(stream, &layer->thickness);
curveSave(stream, layer->_coverage_by_altitude);
noiseSaveGenerator(stream, layer->_shape_noise);
noiseSaveGenerator(stream, layer->_edge_noise);
materialSave(stream, &layer->material);
packWriteDouble(stream, &layer->hardness);
packWriteDouble(stream, &layer->transparencydepth);
packWriteDouble(stream, &layer->lighttraversal);
packWriteDouble(stream, &layer->minimumlight);
packWriteDouble(stream, &layer->shape_scaling);
packWriteDouble(stream, &layer->edge_scaling);
packWriteDouble(stream, &layer->edge_length);
packWriteDouble(stream, &layer->base_coverage);
}
void _cloudsLayerLoad(PackStream* stream, CloudsLayerDefinition* layer)
{
int clouds_type;
packReadInt(stream, &clouds_type);
layer->type = (CloudsType)clouds_type;
packReadDouble(stream, &layer->lower_altitude);
packReadDouble(stream, &layer->thickness);
materialLoad(stream, &layer->material);
packReadDouble(stream, &layer->hardness);
packReadDouble(stream, &layer->transparencydepth);
packReadDouble(stream, &layer->lighttraversal);
packReadDouble(stream, &layer->minimumlight);
packReadDouble(stream, &layer->shape_scaling);
packReadDouble(stream, &layer->edge_scaling);
packReadDouble(stream, &layer->edge_length);
packReadDouble(stream, &layer->base_coverage);
cloudsLayerValidateDefinition(layer);
}
LayerType cloudsGetLayerType()
{
LayerType result;
result.callback_create = (LayerCallbackCreate)cloudsLayerCreateDefinition;
result.callback_delete = (LayerCallbackDelete)cloudsLayerDeleteDefinition;
result.callback_copy = (LayerCallbackCopy)cloudsLayerCopyDefinition;
result.callback_validate = (LayerCallbackValidate)cloudsLayerValidateDefinition;
result.callback_save = (LayerCallbackSave)_cloudsLayerSave;
result.callback_load = (LayerCallbackLoad)_cloudsLayerLoad;
return result;
}

View file

@ -0,0 +1,83 @@
#include "private.h"
#include <math.h>
/*
* Clouds presets.
*/
void cloudsAutoPreset(CloudsLayerDefinition* definition, CloudsPreset preset)
{
definition->material.base.r = 0.7;
definition->material.base.g = 0.7;
definition->material.base.b = 0.7;
definition->material.base.a = 1.0;
switch (preset)
{
case CLOUDS_PRESET_CIRRUS:
definition->type = CLOUDS_TYPE_CIRRUS;
definition->lower_altitude = 25.0;
definition->thickness = 2.0;
definition->material.reflection = 0.4;
definition->material.shininess = 0.5;
definition->hardness = 0.0;
definition->transparencydepth = 3.0;
definition->lighttraversal = 10.0;
definition->minimumlight = 0.6;
definition->shape_scaling = 8.0;
definition->edge_scaling = 2.0;
definition->edge_length = 0.8;
definition->base_coverage = 0.6;
break;
case CLOUDS_PRESET_CUMULUS:
definition->type = CLOUDS_TYPE_CUMULUS;
definition->lower_altitude = 15.0;
definition->thickness = 15.0;
definition->material.reflection = 0.5;
definition->material.shininess = 1.2;
definition->hardness = 0.25;
definition->transparencydepth = 1.5;
definition->lighttraversal = 8.0;
definition->minimumlight = 0.4;
definition->shape_scaling = 20.0;
definition->edge_scaling = 2.0;
definition->edge_length = 0.0;
definition->base_coverage = 0.7;
break;
case CLOUDS_PRESET_STRATOCUMULUS:
definition->type = CLOUDS_TYPE_STRATOCUMULUS;
definition->lower_altitude = 5.0;
definition->thickness = 6.0;
definition->material.reflection = 0.3;
definition->material.shininess = 0.8;
definition->hardness = 0.25;
definition->transparencydepth = 1.5;
definition->lighttraversal = 7.0;
definition->minimumlight = 0.4;
definition->shape_scaling = 10.0;
definition->edge_scaling = 0.8;
definition->edge_length = 0.3;
definition->base_coverage = 0.4;
break;
case CLOUDS_PRESET_STRATUS:
definition->type = CLOUDS_TYPE_STRATUS;
definition->lower_altitude = 3.0;
definition->thickness = 4.0;
definition->material.reflection = 0.1;
definition->material.shininess = 0.8;
definition->hardness = 0.1;
definition->transparencydepth = 3.0;
definition->lighttraversal = 10.0;
definition->minimumlight = 0.6;
definition->shape_scaling = 8.0;
definition->edge_scaling = 2.0;
definition->edge_length = 1.0;
definition->base_coverage = 0.4;
break;
default:
break;
}
cloudsLayerValidateDefinition(definition);
}

View file

@ -0,0 +1,65 @@
#include "private.h"
#include "../tools/euclid.h"
#include "../renderer.h"
#include "../tools.h"
/*
* Clouds previews.
*/
Color _fakeApplyLightingToSurface(Renderer* renderer, Vector3 location, Vector3 normal, SurfaceMaterial* material)
{
UNUSED(renderer);
UNUSED(location);
UNUSED(normal);
UNUSED(material);
return COLOR_WHITE;
}
Renderer* cloudsCreatePreviewCoverageRenderer()
{
Renderer* result = rendererCreate();
result->render_quality = 5;
result->applyLightingToSurface = _fakeApplyLightingToSurface;
return result;
}
Color cloudsGetPreviewCoverage(Renderer* renderer, double x, double y, double scaling)
{
Vector3 eye, look;
eye.x = 0.0;
eye.y = scaling;
eye.z = -10.0 * scaling;
look.x = x * 0.01 / scaling;
look.y = -y * 0.01 / scaling - 0.3;
look.z = 1.0;
look = v3Normalize(look);
return renderer->clouds->getColor(renderer, COLOR_BLUE, eye, v3Add(eye, v3Scale(look, 1000.0)));
}
Renderer* cloudsCreatePreviewColorRenderer()
{
Renderer* result = rendererCreate();
result->render_quality = 8;
return result;
}
Color cloudsGetPreviewColor(Renderer* renderer, double x, double y)
{
Vector3 start, end;
double thickness = 0.5;
start.x = x * thickness * 0.5;
start.y = -y * thickness * 0.5;
start.z = thickness * 0.5;
end.x = start.x;
end.y = start.y;
end.z = -start.z;
return renderer->clouds->getColor(renderer, COLOR_BLUE, start, end);
}

View file

@ -0,0 +1,21 @@
#ifndef _PAYSAGES_CLOUDS_PRIVATE_H_
#define _PAYSAGES_CLOUDS_PRIVATE_H_
#include "public.h"
#define CLOUDS_MAX_LAYERS 6
#define MAX_SEGMENT_COUNT 30
typedef struct
{
Vector3 start;
Vector3 end;
double length;
} CloudSegment;
void cloudsLayerValidateDefinition(CloudsLayerDefinition* definition);
Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light);
Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end);
#endif

View file

@ -0,0 +1,85 @@
#ifndef _PAYSAGES_CLOUDS_PUBLIC_H_
#define _PAYSAGES_CLOUDS_PUBLIC_H_
#include "../shared/types.h"
#include "../tools/lighting.h"
#include "../tools/curve.h"
#include "../tools/euclid.h"
#include "../noise.h"
#include "../layers.h"
#ifdef __cplusplus
extern "C" {
#endif
typedef enum
{
CLOUDS_TYPE_CIRRUS,
CLOUDS_TYPE_CUMULUS,
CLOUDS_TYPE_STRATOCUMULUS,
CLOUDS_TYPE_STRATUS
} CloudsType;
typedef enum
{
CLOUDS_PRESET_CIRRUS,
CLOUDS_PRESET_CUMULUS,
CLOUDS_PRESET_STRATOCUMULUS,
CLOUDS_PRESET_STRATUS
} CloudsPreset;
typedef struct
{
CloudsType type;
double lower_altitude;
double thickness;
double base_coverage;
double shape_scaling;
double edge_scaling;
double edge_length;
SurfaceMaterial material;
double hardness;
double transparencydepth;
double lighttraversal;
double minimumlight;
Curve* _coverage_by_altitude;
NoiseGenerator* _shape_noise;
NoiseGenerator* _edge_noise;
} CloudsLayerDefinition;
typedef struct
{
Layers* layers;
} CloudsDefinition;
typedef Color (*FuncCloudsGetColor)(Renderer* renderer, Color base, Vector3 start, Vector3 end);
typedef struct
{
CloudsDefinition* definition;
FuncCloudsGetColor getColor;
FuncLightingAlterLight alterLight;
} CloudsRenderer;
extern StandardDefinition CloudsDefinitionClass;
extern StandardRenderer CloudsRendererClass;
LayerType cloudsGetLayerType();
void cloudsAutoPreset(CloudsLayerDefinition* definition, CloudsPreset preset);
Renderer* cloudsCreatePreviewCoverageRenderer();
Color cloudsGetPreviewCoverage(Renderer* renderer, double x, double y, double scaling);
Renderer* cloudsCreatePreviewColorRenderer();
Color cloudsGetPreviewColor(Renderer* renderer, double x, double y);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -0,0 +1,100 @@
#include "private.h"
#include <stdlib.h>
#include "../tools.h"
#include "../renderer.h"
/******************** Fake ********************/
static int _fakeAlterLight(Renderer* renderer, LightDefinition* light, Vector3 location)
{
UNUSED(renderer);
UNUSED(light);
UNUSED(location);
return 0;
}
static Color _fakeGetColor(Renderer* renderer, Color base, Vector3 start, Vector3 end)
{
UNUSED(renderer);
UNUSED(start);
UNUSED(end);
return base;
}
/******************** Real ********************/
/*static int _cmpLayer(const void* layer1, const void* layer2)
{
return (((CloudsLayerDefinition*)layer1)->lower_altitude > ((CloudsLayerDefinition*)layer2)->lower_altitude) ? -1 : 1;
}*/
static int _alterLight(Renderer* renderer, LightDefinition* light, Vector3 location)
{
CloudsDefinition* definition = renderer->clouds->definition;
int i, n;
/* TODO Iter layers in sorted order */
n = layersCount(definition->layers);
for (i = 0; i < n; i++)
{
light->color = cloudsLayerFilterLight(layersGetLayer(definition->layers, i), renderer, light->color, location, v3Add(location, v3Scale(light->direction, -10000.0)), v3Scale(light->direction, -1.0));
}
return n > 0;
}
static Color _getColor(Renderer* renderer, Color base, Vector3 start, Vector3 end)
{
CloudsDefinition* definition = renderer->clouds->definition;
int i, n;
n = layersCount(definition->layers);
if (n < 1)
{
return base;
}
/* TODO Iter layers in sorted order */
for (i = 0; i < n; i++)
{
base = cloudsApplyLayer(layersGetLayer(definition->layers, i), base, renderer, start, end);
}
return base;
}
/******************** Renderer ********************/
static CloudsRenderer* _createRenderer()
{
CloudsRenderer* result;
result = malloc(sizeof(CloudsRenderer));
result->definition = CloudsDefinitionClass.create();
result->getColor = _fakeGetColor;
result->alterLight = (FuncLightingAlterLight)_fakeAlterLight;
return result;
}
static void _deleteRenderer(CloudsRenderer* renderer)
{
CloudsDefinitionClass.destroy(renderer->definition);
free(renderer);
}
static void _bindRenderer(Renderer* renderer, CloudsDefinition* definition)
{
CloudsDefinitionClass.copy(definition, renderer->clouds->definition);
renderer->clouds->getColor = _getColor;
renderer->clouds->alterLight = (FuncLightingAlterLight)_alterLight;
lightingManagerRegisterFilter(renderer->lighting, (FuncLightingAlterLight)_alterLight, renderer);
}
StandardRenderer CloudsRendererClass = {
(FuncObjectCreate)_createRenderer,
(FuncObjectDelete)_deleteRenderer,
(FuncObjectBind)_bindRenderer
};

374
lib_paysages/clouds/tools.c Normal file
View file

@ -0,0 +1,374 @@
#include "private.h"
/*
* Clouds tools.
*/
#include "../renderer.h"
static double _standardCoverageFunc(CloudsLayerDefinition* layer, Vector3 position)
{
if (position.y < layer->lower_altitude || position.y >= layer->lower_altitude + layer->thickness)
{
return 0.0;
}
else
{
return layer->base_coverage * curveGetValue(layer->_coverage_by_altitude, (position.y - layer->lower_altitude) / layer->thickness);
}
}
static inline double _getDistanceToBorder(CloudsLayerDefinition* layer, Vector3 position)
{
double density, coverage, val;
val = noiseGet3DTotal(layer->_shape_noise, position.x / layer->shape_scaling, position.y / layer->shape_scaling, position.z / layer->shape_scaling) / noiseGetMaxValue(layer->_shape_noise);
coverage = _standardCoverageFunc(layer, position);
density = 0.5 * val - 0.5 + coverage;
if (density <= 0.0)
{
/* outside the main shape */
return density * layer->shape_scaling;
}
else
{
/* inside the main shape, using edge noise */
density /= coverage;
if (density < layer->edge_length)
{
density /= layer->edge_length;
val = 0.5 * noiseGet3DTotal(layer->_edge_noise, position.x / layer->edge_scaling, position.y / layer->edge_scaling, position.z / layer->edge_scaling) / noiseGetMaxValue(layer->_edge_noise);
val = val - 0.5 + density;
return val * (density * coverage * layer->shape_scaling + (1.0 - density) * layer->edge_scaling);
}
else
{
return density * coverage * layer->shape_scaling;
}
}
}
static inline Vector3 _getNormal(CloudsLayerDefinition* layer, Vector3 position, double detail)
{
Vector3 result = {0.0, 0.0, 0.0};
Vector3 dposition;
double val, dval;
val = _getDistanceToBorder(layer, position);
dposition.x = position.x + detail;
dposition.y = position.y;
dposition.z = position.z;
dval = val - _getDistanceToBorder(layer, dposition);
result.x += dval;
dposition.x = position.x - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.x -= dval;
dposition.x = position.x;
dposition.y = position.y + detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.y += dval;
dposition.y = position.y - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.y -= dval;
dposition.y = position.y;
dposition.z = position.z + detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.z += dval;
dposition.z = position.z - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.z -= dval;
return v3Normalize(result);
}
/**
* Optimize the search limits in a layer.
*
* @param layer The cloud layer
* @param start Start of the search to optimize
* @param end End of the search to optimize
* @return 0 if the search is useless
*/
static int _optimizeSearchLimits(CloudsLayerDefinition* layer, Vector3* start, Vector3* end)
{
Vector3 diff;
if (start->y > layer->lower_altitude + layer->thickness)
{
if (end->y >= layer->lower_altitude + layer->thickness)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
if (end->y < layer->lower_altitude)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude - end->y) / diff.y));
}
}
}
else if (start->y < layer->lower_altitude)
{
if (end->y <= layer->lower_altitude)
{
return 0;
}
else
{
diff = v3Sub(*end, *start);
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
if (end->y >= layer->lower_altitude + layer->thickness)
{
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude + layer->thickness - end->y) / diff.y));
}
}
}
else /* start is inside layer */
{
diff = v3Sub(*end, *start);
if (end->y > layer->lower_altitude + layer->thickness)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
}
else if (end->y < layer->lower_altitude)
{
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
}
}
/* TODO Limit the search length */
return 1;
}
/**
* Go through the cloud layer to find segments (parts of the lookup that are inside the cloud).
*
* @param definition The cloud layer
* @param renderer The renderer environment
* @param start Start position of the lookup (already optimized)
* @param direction Normalized direction of the lookup
* @param detail Level of noise detail required
* @param max_segments Maximum number of segments to collect
* @param max_inside_length Maximum length to spend inside the cloud
* @param max_total_length Maximum lookup length
* @param inside_length Resulting length inside cloud (sum of all segments length)
* @param total_length Resulting lookup length
* @param out_segments Allocated space to fill found segments
* @return Number of segments found
*/
static int _findSegments(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 start, Vector3 direction, double detail, int max_segments, double max_inside_length, double max_total_length, double* inside_length, double* total_length, CloudSegment* out_segments)
{
int inside, segment_count;
double current_total_length, current_inside_length;
double step_length, segment_length, remaining_length;
double noise_distance, last_noise_distance;
Vector3 walker, step, segment_start;
double render_precision;
if (max_segments <= 0)
{
return 0;
}
render_precision = 1.005 - 0.01 * (double)(renderer->render_quality * renderer->render_quality);
if (render_precision > max_total_length / 10.0)
{
render_precision = max_total_length / 10.0;
}
else if (render_precision < max_total_length / 10000.0)
{
render_precision = max_total_length / 10000.0;
}
segment_count = 0;
current_total_length = 0.0;
current_inside_length = 0.0;
segment_length = 0.0;
walker = start;
noise_distance = _getDistanceToBorder(definition, start) * render_precision;
inside = (noise_distance > 0.0) ? 1 : 0;
step = v3Scale(direction, render_precision);
do
{
walker = v3Add(walker, step);
step_length = v3Norm(step);
last_noise_distance = noise_distance;
noise_distance = _getDistanceToBorder(definition, walker) * render_precision;
current_total_length += step_length;
if (current_total_length >= max_total_length || current_inside_length > max_inside_length)
{
noise_distance = 0.0;
}
if (noise_distance > 0.0)
{
if (inside)
{
// inside the cloud
segment_length += step_length;
current_inside_length += step_length;
step = v3Scale(direction, (noise_distance < render_precision) ? render_precision : noise_distance);
}
else
{
// entering the cloud
inside = 1;
segment_length = step_length * noise_distance / (noise_distance - last_noise_distance);
segment_start = v3Add(walker, v3Scale(direction, -segment_length));
current_inside_length += segment_length;
step = v3Scale(direction, render_precision);
}
}
else
{
if (inside)
{
// exiting the cloud
remaining_length = step_length * last_noise_distance / (last_noise_distance - noise_distance);
segment_length += remaining_length;
current_inside_length += remaining_length;
out_segments->start = segment_start;
out_segments->end = v3Add(walker, v3Scale(direction, remaining_length - step_length));
out_segments->length = segment_length;
out_segments++;
if (++segment_count >= max_segments)
{
break;
}
inside = 0;
step = v3Scale(direction, render_precision);
}
else
{
// searching for a cloud
step = v3Scale(direction, (noise_distance > -render_precision) ? render_precision : -noise_distance);
}
}
} while (inside || (walker.y <= definition->lower_altitude + definition->thickness + 0.001 && walker.y >= definition->lower_altitude - 0.001 && current_total_length < max_total_length && current_inside_length < max_inside_length));
*total_length = current_total_length;
*inside_length = current_inside_length;
return segment_count;
}
static Color _applyLayerLighting(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 location, double detail)
{
Vector3 normal;
Color col1, col2;
LightStatus* lighting;
normal = _getNormal(definition, location, 3.0);
if (renderer->render_quality > 3)
{
normal = v3Add(normal, _getNormal(definition, location, 2.0));
normal = v3Add(normal, _getNormal(definition, location, 1.0));
}
if (renderer->render_quality > 5)
{
normal = v3Add(normal, _getNormal(definition, location, 0.5));
}
if (renderer->render_quality > 8)
{
normal = v3Add(normal, _getNormal(definition, location, 0.75));
normal = v3Add(normal, _getNormal(definition, location, 1.25));
normal = v3Add(normal, _getNormal(definition, location, 2.5));
}
normal = v3Scale(v3Normalize(normal), definition->hardness);
return renderer->applyLightingToSurface(renderer, location, normal, &definition->material);
lighting = lightingCreateStatus(renderer->lighting, location, renderer->camera_location);
renderer->atmosphere->getLightingStatus(renderer, lighting, normal, 0);
col1 = lightingApplyStatus(lighting, normal, &definition->material);
col2 = lightingApplyStatus(lighting, v3Scale(normal, -1.0), &definition->material);
lightingDeleteStatus(lighting);
col1.r = (col1.r + col2.r) / 2.0;
col1.g = (col1.g + col2.g) / 2.0;
col1.b = (col1.b + col2.b) / 2.0;
col1.a = (col1.a + col2.a) / 2.0;
return col1;
}
Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end)
{
int i, segment_count;
double max_length, detail, total_length, inside_length;
Vector3 direction;
Color col;
CloudSegment segments[MAX_SEGMENT_COUNT];
if (!_optimizeSearchLimits(definition, &start, &end))
{
return base;
}
direction = v3Sub(end, start);
max_length = v3Norm(direction);
direction = v3Normalize(direction);
detail = renderer->getPrecision(renderer, start) / definition->shape_scaling;
segment_count = _findSegments(definition, renderer, start, direction, detail, MAX_SEGMENT_COUNT, definition->transparencydepth * (double)renderer->render_quality, max_length, &inside_length, &total_length, segments);
for (i = segment_count - 1; i >= 0; i--)
{
col = _applyLayerLighting(definition, renderer, segments[i].start, detail);
col.a = 1.0;
col = renderer->atmosphere->applyAerialPerspective(renderer, start, col);
col.a = (segments[i].length >= definition->transparencydepth) ? 1.0 : (segments[i].length / definition->transparencydepth);
colorMask(&base, &col);
}
if (inside_length >= definition->transparencydepth)
{
col.a = 1.0;
}
return base;
}
Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light)
{
double inside_depth, total_depth, factor;
CloudSegment segments[MAX_SEGMENT_COUNT];
_optimizeSearchLimits(definition, &location, &light_location);
_findSegments(definition, renderer, location, direction_to_light, 0.1, MAX_SEGMENT_COUNT, definition->lighttraversal, v3Norm(v3Sub(light_location, location)), &inside_depth, &total_depth, segments);
if (definition->lighttraversal < 0.0001)
{
factor = 0.0;
}
else
{
factor = inside_depth / definition->lighttraversal;
if (factor > 1.0)
{
factor = 1.0;
}
}
factor = 1.0 - (1.0 - definition->minimumlight) * factor;
light.r = light.r * factor;
light.g = light.g * factor;
light.b = light.b * factor;
return light;
}

View file

@ -69,11 +69,6 @@ static Color _applyTextures(Renderer* renderer, Vector3 location, double precisi
return COLOR_TRANSPARENT;
}
static Color _applyClouds(Renderer* renderer, Color base, Vector3 start, Vector3 end)
{
return base;
}
Color _applyLightingToSurface(Renderer* renderer, Vector3 location, Vector3 normal, SurfaceMaterial* material)
{
LightStatus* light = lightingCreateStatus(renderer->lighting, location, renderer->camera_location);
@ -110,13 +105,13 @@ Renderer* rendererCreate()
result->rayWalking = _rayWalking;
result->getWaterHeightInfo = _getWaterHeightInfo;
result->applyTextures = _applyTextures;
result->applyClouds = _applyClouds;
result->applyLightingToSurface = _applyLightingToSurface;
result->lighting = lightingManagerCreate();
result->atmosphere = AtmosphereRendererClass.create();
result->clouds = CloudsRendererClass.create();
result->terrain = TerrainRendererClass.create();
return result;
@ -127,6 +122,7 @@ void rendererDelete(Renderer* renderer)
lightingManagerDelete(renderer->lighting);
AtmosphereRendererClass.destroy(renderer->atmosphere);
CloudsRendererClass.destroy(renderer->clouds);
TerrainRendererClass.destroy(renderer->terrain);
renderDeleteArea(renderer->render_area);

View file

@ -3,6 +3,7 @@
#include "shared/types.h"
#include "atmosphere/public.h"
#include "clouds/public.h"
#include "terrain/public.h"
#include "render.h"
@ -38,7 +39,6 @@ struct Renderer
RayCastingResult (*rayWalking)(Renderer* renderer, Vector3 location, Vector3 direction, int terrain, int water, int sky, int clouds);
HeightInfo (*getWaterHeightInfo)(Renderer* renderer);
Color (*applyTextures)(Renderer* renderer, Vector3 location, double precision);
Color (*applyClouds)(Renderer* renderer, Color base, Vector3 start, Vector3 end);
/* Autonomous tools */
LightingManager* lighting;
@ -46,6 +46,7 @@ struct Renderer
/* Autonomous sub-renderers */
AtmosphereRenderer* atmosphere;
TerrainRenderer* terrain;
CloudsRenderer* clouds;
/* Custom data */
void* customData[10];

View file

@ -7,7 +7,7 @@
static AtmosphereDefinition* _atmosphere;
static CameraDefinition _camera;
static CloudsDefinition _clouds;
static CloudsDefinition* _clouds;
static TerrainDefinition* _terrain;
static TexturesDefinition _textures;
static WaterDefinition _water;
@ -22,7 +22,7 @@ void sceneryInit()
_atmosphere = AtmosphereDefinitionClass.create();
_camera = cameraCreateDefinition();
_clouds = cloudsCreateDefinition();
_clouds = CloudsDefinitionClass.create();
_terrain = TerrainDefinitionClass.create();
_textures = texturesCreateDefinition();
_water = waterCreateDefinition();
@ -35,7 +35,7 @@ void sceneryQuit()
{
AtmosphereDefinitionClass.destroy(_atmosphere);
cameraDeleteDefinition(&_camera);
cloudsDeleteDefinition(&_clouds);
CloudsDefinitionClass.destroy(_clouds);
TerrainDefinitionClass.destroy(_terrain);
texturesDeleteDefinition(&_textures);
waterDeleteDefinition(&_water);
@ -55,7 +55,7 @@ void scenerySave(PackStream* stream)
noiseSave(stream);
AtmosphereDefinitionClass.save(stream, _atmosphere);
cameraSave(stream, &_camera);
cloudsSave(stream, &_clouds);
CloudsDefinitionClass.save(stream, _clouds);
TerrainDefinitionClass.save(stream, _terrain);
texturesSave(stream, &_textures);
waterSave(stream, &_water);
@ -73,13 +73,12 @@ void sceneryLoad(PackStream* stream)
noiseLoad(stream);
AtmosphereDefinitionClass.load(stream, _atmosphere);
cameraLoad(stream, &_camera);
cloudsLoad(stream, &_clouds);
CloudsDefinitionClass.load(stream, _clouds);
TerrainDefinitionClass.load(stream, _terrain);
texturesLoad(stream, &_textures);
waterLoad(stream, &_water);
cameraValidateDefinition(&_camera, 0);
cloudsValidateDefinition(&_clouds);
texturesValidateDefinition(&_textures);
waterValidateDefinition(&_water);
@ -112,13 +111,12 @@ void sceneryGetCamera(CameraDefinition* camera)
void scenerySetClouds(CloudsDefinition* clouds)
{
cloudsCopyDefinition(clouds, &_clouds);
cloudsValidateDefinition(&_clouds);
CloudsDefinitionClass.copy(clouds, _clouds);
}
void sceneryGetClouds(CloudsDefinition* clouds)
{
cloudsCopyDefinition(&_clouds, clouds);
CloudsDefinitionClass.copy(_clouds, clouds);
}
void scenerySetTerrain(TerrainDefinition* terrain)
@ -182,7 +180,7 @@ static RayCastingResult _rayWalking(Renderer* renderer, Vector3 location, Vector
result.hit = 1;
result.hit_location = v3Add(location, v3Scale(direction, 1000.0));
result.hit_color = renderer->applyClouds(renderer, sky_color, location, result.hit_location);
result.hit_color = renderer->clouds->getColor(renderer, sky_color, location, result.hit_location);
}
return result;
@ -198,11 +196,6 @@ static Color _applyTextures(Renderer* renderer, Vector3 location, double precisi
return texturesGetColor(&_textures, renderer, location.x, location.z, precision);
}
static Color _applyClouds(Renderer* renderer, Color base, Vector3 start, Vector3 end)
{
return cloudsApply(&_clouds, base, renderer, start, end);
}
static Vector3 _projectPoint(Renderer* renderer, Vector3 point)
{
return cameraProject(&renderer->render_camera, renderer, point);
@ -236,13 +229,13 @@ Renderer* sceneryCreateStandardRenderer()
result->rayWalking = _rayWalking;
result->getWaterHeightInfo = _getWaterHeightInfo;
result->applyTextures = _applyTextures;
result->applyClouds = _applyClouds;
result->projectPoint = _projectPoint;
result->unprojectPoint = _unprojectPoint;
result->getPrecision = _getPrecision;
AtmosphereRendererClass.bind(result, _atmosphere);
TerrainRendererClass.bind(result, _terrain);
CloudsRendererClass.bind(result, _clouds);
return result;
}

View file

@ -10,9 +10,9 @@
#include "tools/pack.h"
#include "atmosphere/public.h"
#include "clouds/public.h"
#include "terrain/public.h"
#include "camera.h"
#include "clouds.h"
#include "textures.h"
#include "water.h"
#include "renderer.h"

View file

@ -120,7 +120,7 @@ static Color _getFinalColor(Renderer* renderer, Vector3 location, double precisi
/* TODO Factorize this in scenery renderer */
color = renderer->atmosphere->applyAerialPerspective(renderer, location, color);
color = renderer->applyClouds(renderer, color, renderer->camera_location, location);
color = renderer->clouds->getColor(renderer, color, renderer->camera_location, location);
return color;
}
@ -193,7 +193,7 @@ static RayCastingResult _castRay(Renderer* renderer, Vector3 start, Vector3 dire
return result;
}
static int _alterLight(LightDefinition* light, Vector3 location, Renderer* renderer)
static int _alterLight(Renderer* renderer, LightDefinition* light, Vector3 location)
{
TerrainDefinition* definition = renderer->terrain->definition;
Vector3 inc_vector, direction_to_light;

View file

@ -120,6 +120,23 @@ void colorMask(Color* base, Color* mask)
double colorNormalize(Color* col)
{
assert(col->r >= 0.0);
assert(col->g >= 0.0);
assert(col->b >= 0.0);
assert(col->a >= 0.0);
#ifdef isnan
assert(!isnan(col->r));
assert(!isnan(col->g));
assert(!isnan(col->b));
assert(!isnan(col->a));
#endif
#ifdef isfinite
assert(isfinite(col->r));
assert(isfinite(col->g));
assert(isfinite(col->b));
assert(isfinite(col->a));
#endif
if (col->r > 1.0)
{
col->r = 1.0;
@ -136,10 +153,6 @@ double colorNormalize(Color* col)
/*double max = colorGetValue(col);
assert(max >= 0.0);
assert(col->r >= 0.0);
assert(col->g >= 0.0);
assert(col->b >= 0.0);
assert(col->a >= 0.0);
if (max > 1.0)
{

View file

@ -97,7 +97,7 @@ void lightingPushLight(LightStatus* status, LightDefinition* light)
{
LightFilterCallback callback = manager->callbacks[i];
LightDefinition temp = final;
if (callback.filter(&temp, status->location, callback.data))
if (callback.filter(callback.data, &temp, status->location))
{
final = temp;
}
@ -147,6 +147,7 @@ Color lightingApplyOneLight(LightDefinition* light, Vector3 eye, Vector3 locatio
/* diffused light */
double diffuse = v3Dot(direction_inv, normal);
diffuse = (diffuse + (1.0 - normal_norm)) / (1.0 + (1.0 - normal_norm));
if (diffuse > 0.0)
{
result.r += diffuse * material->base.r * light_color.r;

View file

@ -24,7 +24,7 @@ typedef struct
int altered; /* Should the light be filtered or masked (by atmosphere, water, ground, clouds...) */
} LightDefinition;
typedef int (*FuncLightingAlterLight)(LightDefinition* light, Vector3 at, void* data);
typedef int (*FuncLightingAlterLight)(void* data, LightDefinition* light, Vector3 at);
typedef struct LightingManager LightingManager;
typedef struct LightStatus LightStatus;

View file

@ -352,7 +352,7 @@ WaterResult waterGetColorDetail(WaterDefinition* definition, Renderer* renderer,
color = renderer->applyLightingToSurface(renderer, location, normal, &material);
color = renderer->atmosphere->applyAerialPerspective(renderer, location, color);
color = renderer->applyClouds(renderer, color, renderer->camera_location, location);
color = renderer->clouds->getColor(renderer, color, renderer->camera_location, location);
result.base = definition->material.base;
result.final = color;