paysages : Progress on bruneton atmospheric model (WIP).

git-svn-id: https://subversion.assembla.com/svn/thunderk/paysages@482 b1fd45b6-86a6-48da-8261-f70d1f35bdcc
This commit is contained in:
Michaël Lemaire 2012-12-15 19:45:19 +00:00 committed by ThunderK
parent 70b42a33c0
commit 8474b348a4
3 changed files with 239 additions and 158 deletions

View file

@ -5,8 +5,6 @@
* http://evasion.inrialpes.fr/~Eric.Bruneton/
*/
#if 1
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
@ -16,10 +14,6 @@
/*********************** Constants ***********************/
#define TRANSMITTANCE_NON_LINEAR
#define INSCATTER_NON_LINEAR
#define FIX
static const double Rg = 6360.0;
static const double Rt = 6420.0;
static const double RL = 6421.0;
@ -27,6 +21,7 @@ static const double exposure = 0.4;
static const double ISun = 100.0;
static const double AVERAGE_GROUND_REFLECTANCE = 0.1;
#if 0
#define RES_MU 128
#define RES_MU_S 32
#define RES_R 32
@ -39,6 +34,20 @@ static const double AVERAGE_GROUND_REFLECTANCE = 0.1;
#define INSCATTER_INTEGRAL_SAMPLES 50
#define IRRADIANCE_INTEGRAL_SAMPLES 32
#define INSCATTER_SPHERICAL_INTEGRAL_SAMPLES 16
#else
#define RES_MU 64
#define RES_MU_S 16
#define RES_R 16
#define RES_NU 8
#define SKY_W 64
#define SKY_H 16
#define TRANSMITTANCE_W 256
#define TRANSMITTANCE_H 64
#define TRANSMITTANCE_INTEGRAL_SAMPLES 100
#define INSCATTER_INTEGRAL_SAMPLES 10
#define IRRADIANCE_INTEGRAL_SAMPLES 16
#define INSCATTER_SPHERICAL_INTEGRAL_SAMPLES 8
#endif
Texture2D* _transmittanceTexture = NULL;
Texture2D* _deltaETexture = NULL;
@ -153,23 +162,15 @@ static inline Color _texture3D(Texture3D* tex, Vector3 p)
static Color _texture4D(Texture3D* tex3d, double r, double mu, double muS, double nu)
{
if (r < Rg + 0.001) r = Rg + 0.001;
double H = sqrt(Rt * Rt - Rg * Rg);
double rho = sqrt(r * r - Rg * Rg);
#ifdef INSCATTER_NON_LINEAR
double rmu = r * mu;
double delta = rmu * rmu - r * r + Rg * Rg;
Color cst = (rmu < 0.0 && delta > 0.0) ? vec4(1.0, 0.0, 0.0, 0.5 - 0.5 / (double)(RES_MU)) : vec4(-1.0, H * H, H, 0.5 + 0.5 / (double)(RES_MU));
double uR = 0.5 / (double)(RES_R) + rho / H * (1.0 - 1.0 / (double)(RES_R));
double uMu = cst.a + (rmu * cst.r + sqrt(delta + cst.g)) / (rho + cst.b) * (0.5 - 1.0 / (double)(RES_MU));
// paper formula
//float uMuS = 0.5 / (double)(RES_MU_S) + max((1.0 - exp(-3.0 * muS - 0.6)) / (1.0 - exp(-3.6)), 0.0) * (1.0 - 1.0 / (double)(RES_MU_S));
// better formula
double uMuS = 0.5 / (double)(RES_MU_S) + (atan(max(muS, -0.1975) * tan(1.26 * 1.1)) / 1.1 + (1.0 - 0.26)) * 0.5 * (1.0 - 1.0 / (double)(RES_MU_S));
#else
float uR = 0.5 / (double)(RES_R) + rho / H * (1.0 - 1.0 / (double)(RES_R));
float uMu = 0.5 / (double)(RES_MU) + (mu + 1.0) / 2.0 * (1.0 - 1.0 / (double)(RES_MU));
float uMuS = 0.5 / (double)(RES_MU_S) + max(muS + 0.2, 0.0) / 1.2 * (1.0 - 1.0 / (double)(RES_MU_S));
#endif
double lerp = (nu + 1.0) / 2.0 * ((double)(RES_NU) - 1.0);
double uNu = floor(lerp);
lerp = lerp - uNu;
@ -223,21 +224,10 @@ static double _opticalDepth(double H, double r, double mu, double d)
static inline void _getTransmittanceUV(double r, double mu, double* u, double* v)
{
if (r < Rg + 0.001) r = Rg + 0.001;
double dr = (r - Rg) / (Rt - Rg);
#ifdef TRANSMITTANCE_NON_LINEAR
if (dr >= 0.0)
{
*v = sqrt(dr);
}
else
{
*v = 0.0;
}
*v = sqrt(dr);
*u = atan((mu + 0.15) / (1.0 + 0.15) * tan(1.5)) / 1.5;
#else
*v = (r - Rg) / (Rt - Rg);
*u = (mu + 0.15) / (1.0 + 0.15);
#endif
}
/* transmittance(=transparency) of atmosphere for infinite ray (r,mu)
@ -300,14 +290,12 @@ static double _opticalDepthTransmittance(double H, double r, double mu)
{
double result = 0.0;
double dx = _limit(r, mu) / (double)TRANSMITTANCE_INTEGRAL_SAMPLES;
double xi = 0.0;
double yi = exp(-(r - Rg) / H);
int i;
for (i = 1; i <= TRANSMITTANCE_INTEGRAL_SAMPLES; ++i) {
double xj = (double)i * dx;
double yj = exp(-(sqrt(r * r + xj * xj + 2.0 * xj * r * mu) - Rg) / H);
result += (yi + yj) / 2.0 * dx;
xi = xj;
yi = yj;
}
return mu < -sqrt(1.0 - (Rg / r) * (Rg / r)) ? 1e9 : result;
@ -315,13 +303,8 @@ static double _opticalDepthTransmittance(double H, double r, double mu)
static void _getTransmittanceRMu(double x, double y, double* r, double* muS)
{
#ifdef TRANSMITTANCE_NON_LINEAR
*r = Rg + (y * y) * (Rt - Rg);
*muS = -0.15 + tan(1.5 * x) / tan(1.5) * (1.0 + 0.15);
#else
*r = Rg + y * (Rt - Rg);
*muS = -0.15 + x * (1.0 + 0.15);
#endif
}
/* transmittance(=transparency) of atmosphere for ray (r,mu) of length d
@ -373,7 +356,6 @@ static Color _hdr(Color c1, Color c2, Color c3)
static void _getMuMuSNu(double x, double y, double r, Color dhdH, double* mu, double* muS, double* nu)
{
#ifdef INSCATTER_NON_LINEAR
double d;
if (y < (double)(RES_MU) / 2.0)
{
@ -394,12 +376,6 @@ static void _getMuMuSNu(double x, double y, double r, Color dhdH, double* mu, do
/* better formula */
*muS = tan((2.0 * (*muS) - 1.0 + 0.26) * 1.1) / tan(1.26 * 1.1);
*nu = -1.0 + floor(x / (double)(RES_MU_S)) / ((double)(RES_NU)) * 2.0;
#else
mu = -1.0 + 2.0 * y / (float(RES_MU) - 1.0);
muS = mod(x, float(RES_MU_S)) / (float(RES_MU_S) - 1.0);
muS = -0.2 + muS * 1.2;
nu = -1.0 + floor(x / float(RES_MU_S)) / (float(RES_NU) - 1.0) * 2.0;
#endif
}
static void _getIrradianceUV(double r, double muS, double* uMuS, double* uR)
@ -516,7 +492,6 @@ static void _inscatter1(double r, double mu, double muS, double nu, Color* ray,
ray->r = ray->g = ray->b = 0.0;
mie->r = mie->g = mie->b = 0.0;
double dx = _limit(r, mu) / (double)(INSCATTER_INTEGRAL_SAMPLES);
double xi = 0.0;
Color rayi;
Color miei;
_integrand1(r, mu, muS, nu, 0.0, &rayi, &miei);
@ -533,7 +508,6 @@ static void _inscatter1(double r, double mu, double muS, double nu, Color* ray,
mie->r += (miei.r + miej.r) / 2.0 * dx;
mie->g += (miei.g + miej.g) / 2.0 * dx;
mie->b += (miei.b + miej.b) / 2.0 * dx;
xi = xj;
rayi = rayj;
miei = miej;
}
@ -643,9 +617,9 @@ static Color _inscatterS(double r, double mu, double muS, double nu, int first)
double pm1 = _phaseFunctionM(nu1);
Color ray1 = _texture4D(_deltaSRTexture, r, w.z, muS, nu1);
Color mie1 = _texture4D(_deltaSMTexture, r, w.z, muS, nu1);
raymie.r += ray1.r * pr1 + mie1.r + pm1;
raymie.g += ray1.g * pr1 + mie1.g + pm1;
raymie.b += ray1.b * pr1 + mie1.b + pm1;
raymie1.r += ray1.r * pr1 + mie1.r + pm1;
raymie1.g += ray1.g * pr1 + mie1.g + pm1;
raymie1.b += ray1.b * pr1 + mie1.b + pm1;
}
else
{
@ -739,6 +713,76 @@ void _irradianceNProg(Texture2D* tex, int first)
}
}
/*********************** inscatterN.glsl ***********************/
static Color _integrand2(double r, double mu, double muS, double nu, double t)
{
double ri = sqrt(r * r + t * t + 2.0 * r * mu * t);
double mui = (r * mu + t) / ri;
double muSi = (nu * t + muS * r) / ri;
Color c1, c2;
c1 = _texture4D(_deltaJTexture, ri, mui, muSi, nu);
c2 = _transmittance3(r, mu, t);
c1.r *= c2.r;
c1.g *= c2.g;
c1.b *= c2.b;
return c1;
}
static Color _inscatterN(double r, double mu, double muS, double nu)
{
Color raymie = COLOR_BLACK;
double dx = _limit(r, mu) / (double)(INSCATTER_INTEGRAL_SAMPLES);
Color raymiei = _integrand2(r, mu, muS, nu, 0.0);
int i;
for (i = 1; i <= INSCATTER_INTEGRAL_SAMPLES; ++i)
{
double xj = (double)(i) * dx;
Color raymiej = _integrand2(r, mu, muS, nu, xj);
raymie.r += (raymiei.r + raymiej.r) / 2.0 * dx;
raymie.g += (raymiei.r + raymiej.r) / 2.0 * dx;
raymie.b += (raymiei.r + raymiej.r) / 2.0 * dx;
raymiei = raymiej;
}
return raymie;
}
static void _inscatterNProg(Texture3D* result)
{
int x, y;
for (x = 0; x < RES_MU_S * RES_NU; x++)
{
for (y = 0; y < RES_MU; y++)
{
double mu, muS, nu;
_getMuMuSNu((double)x, (double)y, _r, _dhdH, &mu, &muS, &nu);
texture3DSetPixel(result, x, y, _layer, _inscatterN(_r, mu, muS, nu));
}
}
}
/*********************** copyInscatterN.glsl ***********************/
static void _copyInscatterNProg(Texture3D* source, Texture3D* destination)
{
int x, y;
for (x = 0; x < RES_MU_S * RES_NU; x++)
{
for (y = 0; y < RES_MU; y++)
{
double mu, muS, nu;
_getMuMuSNu((double)x, (double)y, _r, _dhdH, &mu, &muS, &nu);
Color col1 = texture3DGetLinear(source, x / (double)(RES_MU_S * RES_NU), y / (double)(RES_MU), _layer + 0.5 / (double)(RES_R));
Color col2 = texture3DGetPixel(destination, x, y, _layer);
col2.r += col1.r * 0.1 / _phaseFunctionR(nu);
col2.g += col1.g * 0.1 / _phaseFunctionR(nu);
col2.b += col1.b * 0.1 / _phaseFunctionR(nu);
col2.a = 1.0;
texture3DSetPixel(destination, x, y, _layer, col2);
}
}
}
/*********************** Final getters ***********************/
/* inscattered light along ray x+tv, when sun in direction s (=S[L]-T(x,x0)S[L]|x0) */
@ -776,19 +820,14 @@ static Color _getInscatterColor(Vector3* _x, double* _t, Vector3 v, Vector3 s, d
double rMu0 = v3Dot(x0, v);
double mu0 = rMu0 / r0;
double muS0 = v3Dot(x0, s) / r0;
#ifdef FIX
/* avoids imprecision problems in transmittance computations based on textures */
*attenuation = _analyticTransmittance(r, mu, t);
#else
*attenuation = _transmittance(r, mu, v, x0);
#endif
if (r0 > Rg + 0.01)
{
/* computes S[L]-T(x,x0)S[L]|x0 */
Color attmod = {attenuation->x, attenuation->y, attenuation->z, attenuation->x};
Color samp = _texture4D(_inscatterTexture, r0, mu0, muS0, nu);
inscatter = _applyInscatter(inscatter, attmod, samp);
#ifdef FIX
/* avoids imprecision problems near horizon by interpolating between two points above and below horizon */
const double EPS = 0.004;
double muHoriz = -sqrt(1.0 - (Rg / r) * (Rg / r));
@ -812,13 +851,10 @@ static Color _getInscatterColor(Vector3* _x, double* _t, Vector3 v, Vector3 s, d
inscatter = vec4mix(inScatterA, inScatterB, a);
}
#endif
}
}
#ifdef FIX
/* avoids imprecision problems in Mie scattering when sun is below horizon */
inscatter.a *= smoothstep(0.00, 0.02, muS);
#endif
Color mie = _getMie(inscatter);
result.r = inscatter.r * phaseR + mie.r * phaseM;
result.g = inscatter.g * phaseR + mie.g * phaseM;
@ -838,6 +874,7 @@ static Color _getInscatterColor(Vector3* _x, double* _t, Vector3 v, Vector3 s, d
result.g *= ISun;
result.b *= ISun;
result.a = 1.0;
/*printf("%f %f %f\n", result.r, result.g, result.b);*/
return result;
}
@ -987,127 +1024,117 @@ void brunetonInit()
{
int layer, x, y, z, order;
if (_transmittanceTexture == NULL) /* TEMP */
/* TODO Deletes */
/* computes transmittance texture T (line 1 in algorithm 4.1) */
_transmittanceTexture = texture2DCreate(TRANSMITTANCE_W, TRANSMITTANCE_H);
if (!_tryLoadCache2D(_transmittanceTexture, "transmittance", 0))
{
/* TODO Deletes */
_precomputeTransmittanceTexture();
_saveCache2D(_transmittanceTexture, "transmittance", 0);
}
/* computes transmittance texture T (line 1 in algorithm 4.1) */
_transmittanceTexture = texture2DCreate(TRANSMITTANCE_W, TRANSMITTANCE_H);
if (!_tryLoadCache2D(_transmittanceTexture, "transmittance", 0))
/* computes irradiance texture deltaE (line 2 in algorithm 4.1) */
_deltaETexture = texture2DCreate(SKY_W, SKY_H);
if (!_tryLoadCache2D(_deltaETexture, "deltaE", 0))
{
_precomputeIrrDeltaETexture();
_saveCache2D(_deltaETexture, "deltaE", 0);
}
/* computes single scattering texture deltaS (line 3 in algorithm 4.1)
* Rayleigh and Mie separated in deltaSR + deltaSM */
_deltaSRTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
_deltaSMTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
if (!_tryLoadCache3D(_deltaSRTexture, "deltaSR", 0) || !_tryLoadCache3D(_deltaSMTexture, "deltaSM", 0))
{
for (layer = 0; layer < RES_R; ++layer)
{
_precomputeTransmittanceTexture();
_saveCache2D(_transmittanceTexture, "transmittance", 0);
printf("deltaS %d\n", layer);
_setLayer(layer);
_inscatter1Prog(_deltaSRTexture, _deltaSMTexture);
}
_saveCache3D(_deltaSRTexture, "deltaSR", 0);
_saveCache3D(_deltaSMTexture, "deltaSM", 0);
}
/* computes irradiance texture deltaE (line 2 in algorithm 4.1) */
_deltaETexture = texture2DCreate(SKY_W, SKY_H);
if (!_tryLoadCache2D(_deltaETexture, "irradianceDeltaE", 0))
/* copies deltaE into irradiance texture E (line 4 in algorithm 4.1) */
/* ??? all black texture (k=0.0) ??? */
_irradianceTexture = texture2DCreate(SKY_W, SKY_H);
texture2DFill(_irradianceTexture, COLOR_BLACK);
/* copies deltaS into inscatter texture S (line 5 in algorithm 4.1) */
_inscatterTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
if (!_tryLoadCache3D(_inscatterTexture, "inscatter", 0))
{
for (x = 0; x < RES_MU_S * RES_NU; x++)
{
_precomputeIrrDeltaETexture();
_saveCache2D(_deltaETexture, "irradianceDeltaE", 0);
for (y = 0; y < RES_MU; y++)
{
for (z = 0; z < RES_R; z++)
{
Color result = texture3DGetPixel(_deltaSRTexture, x, y, z);
Color mie = texture3DGetPixel(_deltaSMTexture, x, y, z);
result.a = mie.r;
texture3DSetPixel(_inscatterTexture, x, y, z, result);
}
}
}
_saveCache3D(_inscatterTexture, "inscatter", 0);
}
/* computes single scattering texture deltaS (line 3 in algorithm 4.1)
* Rayleigh and Mie separated in deltaSR + deltaSM */
_deltaSRTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
_deltaSMTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
if (!_tryLoadCache3D(_deltaSRTexture, "deltaSR", 0) || !_tryLoadCache3D(_deltaSMTexture, "deltaSM", 0))
/* loop for each scattering order (line 6 in algorithm 4.1) */
for (order = 2; order <= 4; ++order)
{
/* computes deltaJ (line 7 in algorithm 4.1) */
_deltaJTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
if (!_tryLoadCache3D(_deltaJTexture, "deltaJ", order))
{
for (layer = 0; layer < RES_R; ++layer)
{
printf("deltaS %d\n", layer);
printf("deltaJ %d %d\n", order, layer);
_setLayer(layer);
_inscatter1Prog(_deltaSRTexture, _deltaSMTexture);
_jProg(_deltaJTexture, order == 2);
}
_saveCache3D(_deltaSRTexture, "deltaSR", 0);
_saveCache3D(_deltaSMTexture, "deltaSM", 0);
_saveCache3D(_deltaJTexture, "deltaJ", order);
}
/* copies deltaE into irradiance texture E (line 4 in algorithm 4.1) */
/* ??? all black texture ??? */
/*_irradianceTexture = texture3DCreate(SKY_W, SKY_H);
_copyIrradianceProg(0.0, _irrDeltaETexture);*/
/* copies deltaS into inscatter texture S (line 5 in algorithm 4.1) */
_inscatterTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
if (!_tryLoadCache3D(_inscatterTexture, "inscatter", 0))
/* computes deltaE (line 8 in algorithm 4.1) */
_deltaETexture = texture2DCreate(SKY_W, SKY_H);
if (!_tryLoadCache2D(_deltaETexture, "deltaE", order))
{
for (x = 0; x < RES_MU_S * RES_NU; x++)
{
for (y = 0; y < RES_MU; y++)
{
for (z = 0; z < RES_R; z++)
{
Color result = texture3DGetPixel(_deltaSRTexture, x, y, z);
Color mie = texture3DGetPixel(_deltaSMTexture, x, y, z);
result.a = mie.r;
texture3DSetPixel(_inscatterTexture, x, y, z, result);
}
}
}
_saveCache3D(_inscatterTexture, "inscatter", 0);
_irradianceNProg(_deltaETexture, order == 2);
_saveCache2D(_deltaETexture, "deltaE", order);
}
/* loop for each scattering order (line 6 in algorithm 4.1) */
for (order = 2; order <= 4; ++order)
/* computes deltaS (line 9 in algorithm 4.1) */
if (!_tryLoadCache3D(_deltaSRTexture, "deltaSR", order))
{
/* computes deltaJ (line 7 in algorithm 4.1) */
_deltaJTexture = texture3DCreate(RES_MU_S * RES_NU, RES_MU, RES_R);
if (!_tryLoadCache3D(_deltaJTexture, "deltaJ", order))
for (layer = 0; layer < RES_R; ++layer)
{
for (layer = 0; layer < RES_R; ++layer)
{
_setLayer(layer);
_jProg(_deltaJTexture, order == 2);
}
_saveCache3D(_deltaJTexture, "deltaJ", order);
printf("deltaS %d %d\n", order, layer);
_setLayer(layer);
_inscatterNProg(_deltaSRTexture);
}
_saveCache3D(_deltaSRTexture, "deltaSR", order);
}
/* computes deltaE (line 8 in algorithm 4.1) */
_deltaETexture = texture2DCreate(SKY_W, SKY_H);
if (!_tryLoadCache2D(_deltaETexture, "deltaE", order))
/* adds deltaE into irradiance texture E (line 10 in algorithm 4.1) */
if (!_tryLoadCache2D(_irradianceTexture, "irradiance", order))
{
texture2DAdd(_deltaETexture, _irradianceTexture);
_saveCache2D(_irradianceTexture, "irradiance", order);
}
/* adds deltaS into inscatter texture S (line 11 in algorithm 4.1) */
if (!_tryLoadCache3D(_inscatterTexture, "inscatter", order))
{
for (layer = 0; layer < RES_R; ++layer)
{
_irradianceNProg(_deltaETexture, order == 2);
_saveCache2D(_deltaETexture, "deltaE", order);
_setLayer(layer);
_copyInscatterNProg(_deltaSRTexture, _inscatterTexture);
}
/* computes deltaS (line 9 in algorithm 4.1) */
/*glFramebufferTextureEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, deltaSRTexture, 0);
glViewport(0, 0, RES_MU_S * RES_NU, RES_MU);
glUseProgram(inscatterNProg);
glUniform1f(glGetUniformLocation(inscatterNProg, "first"), order == 2 ? 1.0 : 0.0);
glUniform1i(glGetUniformLocation(inscatterNProg, "transmittanceSampler"), transmittanceUnit);
glUniform1i(glGetUniformLocation(inscatterNProg, "deltaJSampler"), deltaJUnit);
for (int layer = 0; layer < RES_R; ++layer) {
setLayer(inscatterNProg, layer);
drawQuad();
}*/
/*glEnable(GL_BLEND);
glBlendEquationSeparate(GL_FUNC_ADD, GL_FUNC_ADD);
glBlendFuncSeparate(GL_ONE, GL_ONE, GL_ONE, GL_ONE);*/
/* adds deltaE into irradiance texture E (line 10 in algorithm 4.1) */
/*glFramebufferTextureEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, irradianceTexture, 0);
glViewport(0, 0, SKY_W, SKY_H);
glUseProgram(copyIrradianceProg);
glUniform1f(glGetUniformLocation(copyIrradianceProg, "k"), 1.0);
glUniform1i(glGetUniformLocation(copyIrradianceProg, "deltaESampler"), deltaEUnit);
drawQuad();*/
/* adds deltaS into inscatter texture S (line 11 in algorithm 4.1) */
/*glFramebufferTextureEXT(GL_FRAMEBUFFER_EXT, GL_COLOR_ATTACHMENT0_EXT, inscatterTexture, 0);
glViewport(0, 0, RES_MU_S * RES_NU, RES_MU);
glUseProgram(copyInscatterNProg);
glUniform1i(glGetUniformLocation(copyInscatterNProg, "deltaSSampler"), deltaSRUnit);
for (int layer = 0; layer < RES_R; ++layer) {
setLayer(copyInscatterNProg, layer);
drawQuad();
}
glDisable(GL_BLEND);*/
/* DEBUG */
break;
_saveCache3D(_inscatterTexture, "inscatter", order);
}
}
}
@ -1147,11 +1174,6 @@ Color brunetonGetSkyColor(AtmosphereDefinition* definition, Vector3 eye, Vector3
/*Color groundColor = _groundColor(x, t, v, s, r, mu, attenuation); //R[L0]+R[L*]*/
Color groundColor = COLOR_BLACK;
Color sunColor = _sunColor(x, t, v, s, r, mu); //L0
return inscatterColor;
return _hdr(sunColor, groundColor, inscatterColor); // Eq (16)
}
#else
Color brunetonGetSkyColor(AtmosphereDefinition* definition, Vector3 eye, Vector3 direction, Vector3 sun_position)
{
return COLOR_BLACK;
}
#endif

View file

@ -92,6 +92,33 @@ Color texture2DGetCubic(Texture2D* tex, double dx, double dy)
return texture2DGetLinear(tex, dx, dy);
}
void texture2DFill(Texture2D* tex, Color col)
{
int i, n;
n = tex->xsize * tex->ysize;
for (i = 0; i < n; i++)
{
tex->data[i] = col;
}
}
void texture2DAdd(Texture2D* source, Texture2D* destination)
{
int i, n;
assert(source->xsize == destination->xsize);
assert(source->ysize == destination->ysize);
n = source->xsize * source->ysize;
for (i = 0; i < n; i++)
{
destination->data[i].r += source->data[i].r;
destination->data[i].g += source->data[i].g;
destination->data[i].b += source->data[i].b;
/* destination->data[i].a += source->data[i].a; */
}
}
void texture2DSaveToFile(Texture2D* tex, const char* filepath)
{
systemSavePictureFile(filepath, (PictureCallbackSavePixel)texture2DGetPixel, tex, tex->xsize, tex->ysize);
@ -191,6 +218,34 @@ Color texture3DGetCubic(Texture3D* tex, double dx, double dy, double dz)
return texture3DGetLinear(tex, dx, dy, dz);
}
void texture3DFill(Texture3D* tex, Color col)
{
int i, n;
n = tex->xsize * tex->ysize * tex->zsize;
for (i = 0; i < n; i++)
{
tex->data[i] = col;
}
}
void texture3DAdd(Texture3D* source, Texture3D* destination)
{
int i, n;
assert(source->xsize == destination->xsize);
assert(source->ysize == destination->ysize);
assert(source->zsize == destination->zsize);
n = source->xsize * source->ysize * source->zsize;
for (i = 0; i < n; i++)
{
destination->data[i].r += source->data[i].r;
destination->data[i].g += source->data[i].g;
destination->data[i].b += source->data[i].b;
/* destination->data[i].a += source->data[i].a; */
}
}
static Color _callbackTex3dSave(Texture3D* tex, int x, int y)
{
int z = y / tex->ysize;

View file

@ -22,6 +22,8 @@ Color texture2DGetPixel(Texture2D* tex, int x, int y);
Color texture2DGetNearest(Texture2D* tex, double dx, double dy);
Color texture2DGetLinear(Texture2D* tex, double dx, double dy);
Color texture2DGetCubic(Texture2D* tex, double dx, double dy);
void texture2DFill(Texture2D* tex, Color col);
void texture2DAdd(Texture2D* source, Texture2D* destination);
void texture2DSaveToFile(Texture2D* tex, const char* filepath);
void texture2DLoadFromFile(Texture2D* tex, const char* filepath);
@ -33,6 +35,8 @@ Color texture3DGetPixel(Texture3D* tex, int x, int y, int z);
Color texture3DGetNearest(Texture3D* tex, double dx, double dy, double dz);
Color texture3DGetLinear(Texture3D* tex, double dx, double dy, double dz);
Color texture3DGetCubic(Texture3D* tex, double dx, double dy, double dz);
void texture3DFill(Texture3D* tex, Color col);
void texture3DAdd(Texture3D* source, Texture3D* destination);
void texture3DSaveToFile(Texture3D* tex, const char* filepath);
void texture3DLoadFromFile(Texture3D* tex, const char* filepath);