paysages : Replaced stock noise functions with simplex noise.

git-svn-id: https://subversion.assembla.com/svn/thunderk/paysages@421 b1fd45b6-86a6-48da-8261-f70d1f35bdcc
This commit is contained in:
Michaël Lemaire 2012-08-26 20:02:10 +00:00 committed by ThunderK
parent 8101669544
commit e63948046d
15 changed files with 531 additions and 404 deletions

View file

@ -21,6 +21,7 @@ Scenery :
Rendering :
* New texture model (perpendicular displacement and thickness).
* Added full scene antialiasing (FSAA).
* Replaced old noise algorithm with Simplex Noise (up to 4 times faster).
GUI :
* Improved curve rendering.

16
TODO
View file

@ -1,4 +1,11 @@
Technology Preview 2 :
- Fully move layer management from BaseForm to BaseFormLayer.
- Replace math.h methods by optimized ones (fastfloor, fastsin...).
- Replace terrain canvas editor by full sculpting editor.
=> Add a generation dialog, with fixed resolution.
=> Store local terrain modifications in fully dynamic canvas.
=> Add map preview with editor area.
=> Allow camera move and zoom.
- Finalize Preetham's model usage
=> Apply model to atmosphere (aerial perspective)
=> Find a proper model for night sky (maybe Shirley)
@ -6,15 +13,12 @@ Technology Preview 2 :
- Keep skydome lights in cache for a render.
- Add buttons to restore "auto" default values in tabs and dialogs.
- Add "hardness to light" and shadow control ("minimum lighting") to material.
Technlogy Preview 3 :
- Add logarithmic sliders for some float values.
- Improve previews.
=> Add user markers on OSD.
=> Add areas marking.
- Improve terrain canvas editor.
=> Add GeoArea editor.
=> Resample map on changing resolution.
=> GeoAreas should not overlap.
=> Map loading should not choose arbitrary resolution, choose the closer one and resample.
- Improve textures (current model is greatly incorrect).
=> Separate models (basic texture and covering texture).
=> Covering texture height should inpact terrain height.
@ -29,7 +33,7 @@ Technology Preview 2 :
- Lock some previews together (eg: terrain height and colored preview).
- Find a new licence.
Technology Preview 3 :
Technology Preview 4 :
- Restore render progress.
- Store the terrain canvases in a tree to allow "multi-res" edition.
- Implement High Dynamic Range.

View file

@ -166,9 +166,9 @@ FormClouds::FormClouds(QWidget *parent):
addInputDouble(tr("Max coverage"), &_layer->base_coverage, 0.0, 1.0, 0.01, 0.1);
addInputCurve(tr("Coverage by altitude"), _layer->coverage_by_altitude, 0.0, 1.0, 0.0, 1.0, tr("Altitude in cloud layer"), tr("Coverage value"));
addInputNoise(tr("Shape noise"), _layer->shape_noise);
addInputDouble(tr("Shape scaling"), &_layer->shape_scaling, 1.0, 10.0, 0.1, 1.0);
addInputDouble(tr("Shape scaling"), &_layer->shape_scaling, 3.0, 30.0, 0.3, 3.0);
addInputNoise(tr("Edge noise"), _layer->edge_noise);
addInputDouble(tr("Edge scaling"), &_layer->edge_scaling, 0.02, 0.5, 0.01, 0.1);
addInputDouble(tr("Edge scaling"), &_layer->edge_scaling, 0.06, 1.5, 0.03, 0.3);
addInputDouble(tr("Edge length"), &_layer->edge_length, 0.0, 1.0, 0.01, 0.1);
addInputMaterial(tr("Material"), &_layer->material);
addInputDouble(tr("Hardness to light"), &_layer->hardness, 0.0, 1.0, 0.01, 0.1);

View file

@ -157,7 +157,7 @@ FormTerrain::FormTerrain(QWidget *parent):
addInputNoise(tr("Noise"), _definition.height_noise);
addInputDouble(tr("Height"), &_definition.height_factor, 0.0, 20.0, 0.1, 1.0);
addInputDouble(tr("Scaling"), &_definition.scaling, 1.0, 50.0, 0.1, 5.0);
addInputDouble(tr("Scaling"), &_definition.scaling, 20.0, 200.0, 1.0, 10.0);
addInputDouble(tr("Shadow smoothing"), &_definition.shadow_smoothing, 0.0, 0.3, 0.003, 0.03);
addInputLayers(tr("Canvases"), _definition.canvases, _formBuilderCanvas);

View file

@ -146,7 +146,7 @@ FormTextures::FormTextures(QWidget *parent):
addInputNoise(tr("Surface noise"), _layer->bump_noise);
addInputDouble(tr("Surface noise height"), &_layer->bump_height, 0.0, 0.1, 0.001, 0.01);
addInputDouble(tr("Surface noise scaling"), &_layer->bump_scaling, 0.001, 0.1, 0.001, 0.01);
addInputDouble(tr("Surface noise scaling"), &_layer->bump_scaling, 0.003, 0.3, 0.003, 0.03);
addInputMaterial(tr("Material"), &_layer->material);
addInputCurve(tr("Coverage by altitude"), _supp.height_curve, -20.0, 20.0, 0.0, 1.0, tr("Terrain altitude"), tr("Texture coverage"));
addInputCurve(tr("Coverage by slope"), _supp.slope_curve, 0.0, 5.0, 0.0, 1.0, tr("Terrain slope"), tr("Texture coverage"));

View file

@ -222,7 +222,7 @@ FormWater::FormWater(QWidget *parent):
addInputDouble(tr("Light-through distance"), &_definition.lighting_depth, 0.0, 20.0, 0.1, 1.0);
addInputNoise(tr("Waves noise"), _definition.waves_noise);
addInputDouble(tr("Waves height"), &_definition.waves_noise_height, 0.0, 0.1, 0.001, 0.01);
addInputDouble(tr("Waves scaling"), &_definition.waves_noise_scale, 0.01, 1.0, 0.01, 0.1);
addInputDouble(tr("Waves scaling"), &_definition.waves_noise_scale, 0.03, 3.0, 0.03, 0.3);
revertConfig();
}

View file

@ -38,7 +38,6 @@ WidgetHeightMap::WidgetHeightMap(QWidget *parent, HeightMap* heightmap):
_brush_smoothing = 0.5;
_brush_strength = 1.0;
_brush_noise = noiseCreateGenerator();
noiseGenerateBaseNoise(_brush_noise, 102400);
noiseAddLevelsSimple(_brush_noise, 10, 1.0, 1.0);
}

View file

@ -96,8 +96,7 @@ void autoGenRealisticLandscape(int seed)
water.depth_color.a = 1.0;
water.lighting_depth = 3.0;
water.waves_noise_height = 0.005;
water.waves_noise_scale = 0.07;
noiseGenerateBaseNoise(water.waves_noise, 262144);
water.waves_noise_scale = 0.21;
noiseClearLevels(water.waves_noise);
noiseAddLevelsSimple(water.waves_noise, 2, 1.0, 1.0);
noiseAddLevelsSimple(water.waves_noise, 3, 0.15, 0.1);
@ -136,11 +135,10 @@ void autoGenRealisticLandscape(int seed)
/* Terrain */
terrain = terrainCreateDefinition();
noiseGenerateBaseNoise(terrain.height_noise, 1048576);
noiseClearLevels(terrain.height_noise);
noiseAddLevelsSimple(terrain.height_noise, 10, 1.0, 1.0);
terrain.height_factor = 12.0 / noiseGetMaxValue(terrain.height_noise);
terrain.scaling = 20.0;
terrain.scaling = 60.0;
terrain.shadow_smoothing = 0.03;
scenerySetTerrain(&terrain);
terrainDeleteDefinition(&terrain);
@ -150,11 +148,10 @@ void autoGenRealisticLandscape(int seed)
layer = layersAddLayer(textures.layers, NULL);
layersSetName(textures.layers, layer, "Ground");
texture = layersGetLayer(textures.layers, layer);
noiseGenerateBaseNoise(texture->bump_noise, 102400);
noiseClearLevels(texture->bump_noise);
noiseAddLevelsSimple(texture->bump_noise, 8, 1.0, 1.0);
texture->bump_height = 0.01;
texture->bump_scaling = 0.015;
texture->bump_scaling = 0.045;
texture->material.base.r = 0.6;
texture->material.base.g = 0.55;
texture->material.base.b = 0.57;
@ -168,16 +165,15 @@ void autoGenRealisticLandscape(int seed)
texture = layersGetLayer(textures.layers, layer);
zoneAddHeightRangeQuick(texture->zone, 1.0, -6.0, -5.0, 3.0, 15.0);
zoneAddSlopeRangeQuick(texture->zone, 1.0, 0.0, 0.0, 0.05, 0.4);
noiseGenerateBaseNoise(texture->bump_noise, 102400);
noiseClearLevels(texture->bump_noise);
noiseAddLevelsSimple(texture->bump_noise, 5, 1.0, 0.4);
noiseAddLevelsSimple(texture->bump_noise, 2, 0.03, 0.08);
texture->bump_height = 0.002;
texture->bump_scaling = 0.01;
texture->bump_scaling = 0.03;
texture->material.base.r = 0.12;
texture->material.base.g = 0.19;
texture->material.base.b = 0.035;
texture->material.reflection = 0.1;
texture->material.reflection = 0.03;
texture->material.shininess = 2.0;
texture->thickness = 0.02;
texture->slope_range = 0.03;

View file

@ -88,15 +88,13 @@ CloudsLayerDefinition* cloudsLayerCreateDefinition()
result->transparencydepth = 1.5;
result->lighttraversal = 7.0;
result->minimumlight = 0.4;
result->shape_scaling = 3.5;
result->edge_scaling = 0.07;
result->shape_scaling = 10.0;
result->edge_scaling = 0.2;
result->edge_length = 0.2;
result->base_coverage = 0.35;
result->shape_noise = noiseCreateGenerator();
noiseGenerateBaseNoise(result->shape_noise, 200000);
noiseAddLevelsSimple(result->shape_noise, 5, 1.0, 1.0);
result->edge_noise = noiseCreateGenerator();
noiseGenerateBaseNoise(result->edge_noise, 800000);
noiseAddLevelsSimple(result->edge_noise, 8, 1.0, 1.0);
result->_custom_coverage = _standardCoverageFunc;
@ -359,7 +357,7 @@ static int _findSegments(CloudsLayerDefinition* definition, Renderer* renderer,
}
render_precision = 15.2 - 1.5 * (double)renderer->render_quality;
render_precision = render_precision * definition->shape_scaling / 50.0;
render_precision = render_precision * definition->shape_scaling / 150.0;
if (render_precision > max_total_length / 10.0)
{
render_precision = max_total_length / 10.0;

View file

@ -5,6 +5,7 @@
#include <string.h>
#include "tools.h"
#include "simplexnoise.h"
#define MAX_LEVEL_COUNT 30
@ -12,9 +13,6 @@ struct NoiseLevel;
struct NoiseGenerator
{
int size1;
int size2;
int size3;
double height_offset;
int level_count;
struct NoiseLevel levels[MAX_LEVEL_COUNT];
@ -22,53 +20,23 @@ struct NoiseGenerator
double _max_height;
};
static int _noise_pool_size;
static double* _noise_pool;
static inline double _cubicInterpolate(double* p, double x)
{
return p[1] + 0.5 * x * (p[2] - p[0] + x * (2.0 * p[0] - 5.0 * p[1] + 4.0 * p[2] - p[3] + x * (3.0 * (p[1] - p[2]) + p[3] - p[0])));
}
void noiseInit()
{
int i;
_noise_pool_size = 1048576;
_noise_pool = malloc(sizeof(double) * _noise_pool_size);
for (i = 0; i < _noise_pool_size; i++)
{
_noise_pool[i] = toolsRandom() - 0.5;
}
simplexNoiseInit();
}
void noiseQuit()
{
free(_noise_pool);
}
void noiseSave(PackStream* stream)
{
int i;
packWriteInt(stream, &_noise_pool_size);
for (i = 0; i < _noise_pool_size; i++)
{
packWriteDouble(stream, _noise_pool + i);
}
UNUSED(stream);
}
void noiseLoad(PackStream* stream)
{
int i;
packReadInt(stream, &_noise_pool_size);
_noise_pool = realloc(_noise_pool, sizeof(double) * _noise_pool_size);
for (i = 0; i < _noise_pool_size; i++)
{
packReadDouble(stream, _noise_pool + i);
}
UNUSED(stream);
}
NoiseGenerator* noiseCreateGenerator()
@ -77,9 +45,6 @@ NoiseGenerator* noiseCreateGenerator()
/* initialize */
result = malloc(sizeof(NoiseGenerator));
result->size1 = 1;
result->size2 = 1;
result->size3 = 1;
result->level_count = 0;
result->height_offset = 0.0;
@ -93,19 +58,16 @@ void noiseDeleteGenerator(NoiseGenerator* generator)
free(generator);
}
void noiseSaveGenerator(PackStream* stream, NoiseGenerator* perlin)
void noiseSaveGenerator(PackStream* stream, NoiseGenerator* generator)
{
int x;
packWriteInt(stream, &perlin->size1);
packWriteInt(stream, &perlin->size2);
packWriteInt(stream, &perlin->size3);
packWriteDouble(stream, &perlin->height_offset);
packWriteInt(stream, &perlin->level_count);
packWriteDouble(stream, &generator->height_offset);
packWriteInt(stream, &generator->level_count);
for (x = 0; x < perlin->level_count; x++)
for (x = 0; x < generator->level_count; x++)
{
NoiseLevel* level = perlin->levels + x;
NoiseLevel* level = generator->levels + x;
packWriteDouble(stream, &level->scaling);
packWriteDouble(stream, &level->height);
@ -115,19 +77,16 @@ void noiseSaveGenerator(PackStream* stream, NoiseGenerator* perlin)
}
}
void noiseLoadGenerator(PackStream* stream, NoiseGenerator* perlin)
void noiseLoadGenerator(PackStream* stream, NoiseGenerator* generator)
{
int x;
packReadInt(stream, &perlin->size1);
packReadInt(stream, &perlin->size2);
packReadInt(stream, &perlin->size3);
packReadDouble(stream, &perlin->height_offset);
packReadInt(stream, &perlin->level_count);
packReadDouble(stream, &generator->height_offset);
packReadInt(stream, &generator->level_count);
for (x = 0; x < perlin->level_count; x++)
for (x = 0; x < generator->level_count; x++)
{
NoiseLevel* level = perlin->levels + x;
NoiseLevel* level = generator->levels + x;
packReadDouble(stream, &level->scaling);
packReadDouble(stream, &level->height);
@ -136,14 +95,11 @@ void noiseLoadGenerator(PackStream* stream, NoiseGenerator* perlin)
packReadDouble(stream, &level->zoffset);
}
noiseValidate(perlin);
noiseValidate(generator);
}
void noiseCopy(NoiseGenerator* source, NoiseGenerator* destination)
{
destination->size1 = source->size1;
destination->size2 = source->size2;
destination->size3 = source->size3;
destination->height_offset = source->height_offset;
destination->level_count = source->level_count;
@ -165,16 +121,6 @@ void noiseValidate(NoiseGenerator* generator)
generator->_max_height = max_height;
}
void noiseGenerateBaseNoise(NoiseGenerator* generator, int size)
{
size = (size < 1) ? 1 : size;
size = (size > _noise_pool_size) ? _noise_pool_size : size;
generator->size1 = size;
generator->size2 = (int)floor(sqrt((double)size));
generator->size3 = (int)floor(cbrt((double)size));
}
void noiseForceValue(NoiseGenerator* generator, double value)
{
noiseClearLevels(generator);
@ -182,11 +128,6 @@ void noiseForceValue(NoiseGenerator* generator, double value)
noiseAddLevelSimple(generator, 1.0, 0.0); /* FIXME Should not be needed */
}
int noiseGetBaseSize(NoiseGenerator* generator)
{
return generator->size1;
}
double noiseGetMaxValue(NoiseGenerator* generator)
{
return generator->_max_height;
@ -333,46 +274,12 @@ void noiseNormalizeHeight(NoiseGenerator* generator, double min_height, double m
static inline double _get1DRawNoiseValue(NoiseGenerator* generator, double x)
{
int size = generator->size1;
int xbase = (int)floor(x);
double xinternal = x - (double)xbase;
int x0 = (xbase - 1) % size;
if (x0 < 0)
{
x0 += size;
}
int x1 = xbase % size;
if (x1 < 0)
{
x1 += size;
}
int x2 = (xbase + 1) % size;
if (x2 < 0)
{
x2 += size;
}
int x3 = (xbase + 2) % size;
if (x3 < 0)
{
x3 += size;
}
double buf_cubic_x[4];
buf_cubic_x[0] = _noise_pool[x0 % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[x1 % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[x2 % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[x3 % _noise_pool_size];
return _cubicInterpolate(buf_cubic_x, xinternal);
return simplexNoiseGet2DValue(x, 0.0) * 0.5;
}
static inline double _get1DLevelValue(NoiseGenerator* generator, NoiseLevel* level, double x)
{
return _get1DRawNoiseValue(generator, x / level->scaling + level->xoffset * generator->size1) * level->height;
return _get1DRawNoiseValue(generator, x / level->scaling + level->xoffset) * level->height;
}
double noiseGet1DLevel(NoiseGenerator* generator, int level, double x)
@ -429,89 +336,12 @@ double noiseGet1DDetail(NoiseGenerator* generator, double x, double detail)
static inline double _get2DRawNoiseValue(NoiseGenerator* generator, double x, double y)
{
int size = generator->size2;
int xbase = (int)floor(x);
int ybase = (int)floor(y);
double xinternal = x - (double)xbase;
double yinternal = y - (double)ybase;
int x0 = (xbase - 1) % size;
if (x0 < 0)
{
x0 += size;
}
int x1 = xbase % size;
if (x1 < 0)
{
x1 += size;
}
int x2 = (xbase + 1) % size;
if (x2 < 0)
{
x2 += size;
}
int x3 = (xbase + 2) % size;
if (x3 < 0)
{
x3 += size;
}
int y0 = (ybase - 1) % size;
if (y0 < 0)
{
y0 += size;
}
int y1 = ybase % size;
if (y1 < 0)
{
y1 += size;
}
int y2 = (ybase + 1) % size;
if (y2 < 0)
{
y2 += size;
}
int y3 = (ybase + 2) % size;
if (y3 < 0)
{
y3 += size;
}
double buf_cubic_x[4];
double buf_cubic_y[4];
buf_cubic_x[0] = _noise_pool[(y0 * size + x0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y0 * size + x1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y0 * size + x2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y0 * size + x3) % _noise_pool_size];
buf_cubic_y[0] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y1 * size + x0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y1 * size + x1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y1 * size + x2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y1 * size + x3) % _noise_pool_size];
buf_cubic_y[1] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y2 * size + x0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y2 * size + x1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y2 * size + x2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y2 * size + x3) % _noise_pool_size];
buf_cubic_y[2] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y3 * size + x0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y3 * size + x1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y3 * size + x2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y3 * size + x3) % _noise_pool_size];
buf_cubic_y[3] = _cubicInterpolate(buf_cubic_x, xinternal);
return _cubicInterpolate(buf_cubic_y, yinternal);
return simplexNoiseGet2DValue(x, y) * 0.5;
}
static inline double _get2DLevelValue(NoiseGenerator* generator, NoiseLevel* level, double x, double y)
{
return _get2DRawNoiseValue(generator, x / level->scaling + level->xoffset * generator->size2, y / level->scaling + level->yoffset * generator->size2) * level->height;
return _get2DRawNoiseValue(generator, x / level->scaling + level->xoffset, y / level->scaling + level->yoffset) * level->height;
}
double noiseGet2DLevel(NoiseGenerator* generator, int level, double x, double y)
@ -568,193 +398,12 @@ double noiseGet2DDetail(NoiseGenerator* generator, double x, double y, double de
static inline double _get3DRawNoiseValue(NoiseGenerator* generator, double x, double y, double z)
{
int size = generator->size3;
int xbase = (int)floor(x);
int ybase = (int)floor(y);
int zbase = (int)floor(z);
double xinternal = x - (double)xbase;
double yinternal = y - (double)ybase;
double zinternal = z - (double)zbase;
int x0 = (xbase - 1) % size;
if (x0 < 0)
{
x0 += size;
}
int x1 = xbase % size;
if (x1 < 0)
{
x1 += size;
}
int x2 = (xbase + 1) % size;
if (x2 < 0)
{
x2 += size;
}
int x3 = (xbase + 2) % size;
if (x3 < 0)
{
x3 += size;
}
int y0 = (ybase - 1) % size;
if (y0 < 0)
{
y0 += size;
}
int y1 = ybase % size;
if (y1 < 0)
{
y1 += size;
}
int y2 = (ybase + 1) % size;
if (y2 < 0)
{
y2 += size;
}
int y3 = (ybase + 2) % size;
if (y3 < 0)
{
y3 += size;
}
int z0 = (zbase - 1) % size;
if (z0 < 0)
{
z0 += size;
}
int z1 = zbase % size;
if (z1 < 0)
{
z1 += size;
}
int z2 = (zbase + 1) % size;
if (z2 < 0)
{
z2 += size;
}
int z3 = (zbase + 2) % size;
if (z3 < 0)
{
z3 += size;
}
double buf_cubic_x[4];
double buf_cubic_y[4];
double buf_cubic_z[4];
buf_cubic_x[0] = _noise_pool[(y0 * size * size + x0 * size + z0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y0 * size * size + x1 * size + z0) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y0 * size * size + x2 * size + z0) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y0 * size * size + x3 * size + z0) % _noise_pool_size];
buf_cubic_y[0] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y1 * size * size + x0 * size + z0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y1 * size * size + x1 * size + z0) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y1 * size * size + x2 * size + z0) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y1 * size * size + x3 * size + z0) % _noise_pool_size];
buf_cubic_y[1] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y2 * size * size + x0 * size + z0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y2 * size * size + x1 * size + z0) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y2 * size * size + x2 * size + z0) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y2 * size * size + x3 * size + z0) % _noise_pool_size];
buf_cubic_y[2] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y3 * size * size + x0 * size + z0) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y3 * size * size + x1 * size + z0) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y3 * size * size + x2 * size + z0) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y3 * size * size + x3 * size + z0) % _noise_pool_size];
buf_cubic_y[3] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_z[0] = _cubicInterpolate(buf_cubic_y, yinternal);
buf_cubic_x[0] = _noise_pool[(y0 * size * size + x0 * size + z1) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y0 * size * size + x1 * size + z1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y0 * size * size + x2 * size + z1) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y0 * size * size + x3 * size + z1) % _noise_pool_size];
buf_cubic_y[0] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y1 * size * size + x0 * size + z1) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y1 * size * size + x1 * size + z1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y1 * size * size + x2 * size + z1) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y1 * size * size + x3 * size + z1) % _noise_pool_size];
buf_cubic_y[1] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y2 * size * size + x0 * size + z1) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y2 * size * size + x1 * size + z1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y2 * size * size + x2 * size + z1) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y2 * size * size + x3 * size + z1) % _noise_pool_size];
buf_cubic_y[2] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y3 * size * size + x0 * size + z1) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y3 * size * size + x1 * size + z1) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y3 * size * size + x2 * size + z1) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y3 * size * size + x3 * size + z1) % _noise_pool_size];
buf_cubic_y[3] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_z[1] = _cubicInterpolate(buf_cubic_y, yinternal);
buf_cubic_x[0] = _noise_pool[(y0 * size * size + x0 * size + z2) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y0 * size * size + x1 * size + z2) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y0 * size * size + x2 * size + z2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y0 * size * size + x3 * size + z2) % _noise_pool_size];
buf_cubic_y[0] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y1 * size * size + x0 * size + z2) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y1 * size * size + x1 * size + z2) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y1 * size * size + x2 * size + z2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y1 * size * size + x3 * size + z2) % _noise_pool_size];
buf_cubic_y[1] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y2 * size * size + x0 * size + z2) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y2 * size * size + x1 * size + z2) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y2 * size * size + x2 * size + z2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y2 * size * size + x3 * size + z2) % _noise_pool_size];
buf_cubic_y[2] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y3 * size * size + x0 * size + z2) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y3 * size * size + x1 * size + z2) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y3 * size * size + x2 * size + z2) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y3 * size * size + x3 * size + z2) % _noise_pool_size];
buf_cubic_y[3] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_z[2] = _cubicInterpolate(buf_cubic_y, yinternal);
buf_cubic_x[0] = _noise_pool[(y0 * size * size + x0 * size + z3) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y0 * size * size + x1 * size + z3) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y0 * size * size + x2 * size + z3) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y0 * size * size + x3 * size + z3) % _noise_pool_size];
buf_cubic_y[0] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y1 * size * size + x0 * size + z3) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y1 * size * size + x1 * size + z3) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y1 * size * size + x2 * size + z3) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y1 * size * size + x3 * size + z3) % _noise_pool_size];
buf_cubic_y[1] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y2 * size * size + x0 * size + z3) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y2 * size * size + x1 * size + z3) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y2 * size * size + x2 * size + z3) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y2 * size * size + x3 * size + z3) % _noise_pool_size];
buf_cubic_y[2] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_x[0] = _noise_pool[(y3 * size * size + x0 * size + z3) % _noise_pool_size];
buf_cubic_x[1] = _noise_pool[(y3 * size * size + x1 * size + z3) % _noise_pool_size];
buf_cubic_x[2] = _noise_pool[(y3 * size * size + x2 * size + z3) % _noise_pool_size];
buf_cubic_x[3] = _noise_pool[(y3 * size * size + x3 * size + z3) % _noise_pool_size];
buf_cubic_y[3] = _cubicInterpolate(buf_cubic_x, xinternal);
buf_cubic_z[3] = _cubicInterpolate(buf_cubic_y, yinternal);
return _cubicInterpolate(buf_cubic_z, zinternal);
return simplexNoiseGet3DValue(x, y, z) * 0.5;
}
static inline double _get3DLevelValue(NoiseGenerator* generator, NoiseLevel* level, double x, double y, double z)
{
return _get3DRawNoiseValue(generator, x / level->scaling + level->xoffset * generator->size3, y / level->scaling + level->yoffset * generator->size3, z / level->scaling + level->zoffset * generator->size3) * level->height;
return _get3DRawNoiseValue(generator, x / level->scaling + level->xoffset, y / level->scaling + level->yoffset, z / level->scaling + level->zoffset) * level->height;
}
double noiseGet3DLevel(NoiseGenerator* generator, int level, double x, double y, double z)

View file

@ -25,13 +25,11 @@ void noiseLoad(PackStream* stream);
NoiseGenerator* noiseCreateGenerator();
void noiseDeleteGenerator(NoiseGenerator* generator);
void noiseSaveGenerator(PackStream* stream, NoiseGenerator* perlin);
void noiseLoadGenerator(PackStream* stream, NoiseGenerator* perlin);
void noiseSaveGenerator(PackStream* stream, NoiseGenerator* generator);
void noiseLoadGenerator(PackStream* stream, NoiseGenerator* generator);
void noiseCopy(NoiseGenerator* source, NoiseGenerator* destination);
void noiseValidate(NoiseGenerator* generator);
void noiseGenerateBaseNoise(NoiseGenerator* generator, int size);
void noiseForceValue(NoiseGenerator* generator, double value);
int noiseGetBaseSize(NoiseGenerator* generator);
double noiseGetMaxValue(NoiseGenerator* generator);
int noiseGetLevelCount(NoiseGenerator* generator);
void noiseClearLevels(NoiseGenerator* generator);

467
lib_paysages/simplexnoise.c Normal file
View file

@ -0,0 +1,467 @@
#include "simplexnoise.h"
/*
* Simplex noise implementation.
*
* Based on Stefan Gustavson implementation.
*/
#include <stdlib.h>
#include <math.h>
#include <string.h>
typedef struct
{
double x;
double y;
double z;
} Grad3;
typedef struct
{
double x;
double y;
double z;
double w;
} Grad4;
static Grad3 _grad3[] = {
{1, 1, 0},
{-1, 1, 0},
{1, -1, 0},
{-1, -1, 0},
{1, 0, 1},
{-1, 0, 1},
{1, 0, -1},
{-1, 0, -1},
{0, 1, 1},
{0, -1, 1},
{0, 1, -1},
{0, -1, -1}
};
static Grad4 _grad4[] = {
{0, 1, 1, 1},
{0, 1, 1, -1},
{0, 1, -1, 1},
{0, 1, -1, -1},
{0, -1, 1, 1},
{0, -1, 1, -1},
{0, -1, -1, 1},
{0, -1, -1, -1},
{1, 0, 1, 1},
{1, 0, 1, -1},
{1, 0, -1, 1},
{1, 0, -1, -1},
{-1, 0, 1, 1},
{-1, 0, 1, -1},
{-1, 0, -1, 1},
{-1, 0, -1, -1},
{1, 1, 0, 1},
{1, 1, 0, -1},
{1, -1, 0, 1},
{1, -1, 0, -1},
{-1, 1, 0, 1},
{-1, 1, 0, -1},
{-1, -1, 0, 1},
{-1, -1, 0, -1},
{1, 1, 1, 0},
{1, 1, -1, 0},
{1, -1, 1, 0},
{1, -1, -1, 0},
{-1, 1, 1, 0},
{-1, 1, -1, 0},
{-1, -1, 1, 0},
{-1, -1, -1, 0}
};
static short _permutations[] = {151, 160, 137, 91, 90, 15,
131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23,
190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33,
88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166,
77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244,
102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196,
135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123,
5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42,
223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228,
251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107,
49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254,
138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180};
static short _permutations2[512];
static short _permutationsMod12[512];
static double _F2;
static double _G2;
static double _F3;
static double _G3;
static double _F4;
static double _G4;
static inline int _fastfloor(double x)
{
int xi = (int) x;
return x < xi ? xi - 1 : xi;
}
static double _dot2(Grad3 g, double x, double y)
{
return g.x * x + g.y * y;
}
static double _dot3(Grad3 g, double x, double y, double z)
{
return g.x * x + g.y * y + g.z * z;
}
static double _dot4(Grad4 g, double x, double y, double z, double w)
{
return g.x * x + g.y * y + g.z * z + g.w * w;
}
void simplexNoiseInit()
{
int i;
/* To remove the need for index wrapping, double the permutation table length */
for (i = 0; i < 512; i++)
{
_permutations2[i] = _permutations[i & 255];
_permutationsMod12[i] = (short) (_permutations2[i] % 12);
}
/* Skewing and unskewing factors for 2, 3, and 4 dimensions */
_F2 = 0.5 * (sqrt(3.0) - 1.0);
_G2 = (3.0 - sqrt(3.0)) / 6.0;
_F3 = 1.0 / 3.0;
_G3 = 1.0 / 6.0;
_F4 = (sqrt(5.0) - 1.0) / 4.0;
_G4 = (5.0 - sqrt(5.0)) / 20.0;
}
double simplexNoiseGet2DValue(double xin, double yin)
{
double n0, n1, n2; /* Noise contributions from the three corners */
/* Skew the input space to determine which simplex cell we're in */
double s = (xin + yin) * _F2; /* Hairy factor for 2D */
int i = _fastfloor(xin + s);
int j = _fastfloor(yin + s);
double t = (i + j) * _G2;
double X0 = i - t; /* Unskew the cell origin back to (x,y) space */
double Y0 = j - t;
double x0 = xin - X0; /* The x,y distances from the cell origin */
double y0 = yin - Y0;
/* For the 2D case, the simplex shape is an equilateral triangle.
Determine which simplex we are in. */
int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
if (x0 > y0)
{
i1 = 1;
j1 = 0;
} /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
else
{
i1 = 0;
j1 = 1;
} /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
/* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
c = (3-sqrt(3))/6 */
double x1 = x0 - i1 + _G2; /* Offsets for middle corner in (x,y) unskewed coords */
double y1 = y0 - j1 + _G2;
double x2 = x0 - 1.0 + 2.0 * _G2; /* Offsets for last corner in (x,y) unskewed coords */
double y2 = y0 - 1.0 + 2.0 * _G2;
/* Work out the hashed gradient indices of the three simplex corners */
int ii = i & 255;
int jj = j & 255;
int gi0 = _permutationsMod12[ii + _permutations2[jj]];
int gi1 = _permutationsMod12[ii + i1 + _permutations2[jj + j1]];
int gi2 = _permutationsMod12[ii + 1 + _permutations2[jj + 1]];
/* Calculate the contribution from the three corners */
double t0 = 0.5 - x0 * x0 - y0*y0;
if (t0 < 0) n0 = 0.0;
else
{
t0 *= t0;
n0 = t0 * t0 * _dot2(_grad3[gi0], x0, y0); /* (x,y) of _grad3 used for 2D gradient */
}
double t1 = 0.5 - x1 * x1 - y1*y1;
if (t1 < 0) n1 = 0.0;
else
{
t1 *= t1;
n1 = t1 * t1 * _dot2(_grad3[gi1], x1, y1);
}
double t2 = 0.5 - x2 * x2 - y2*y2;
if (t2 < 0) n2 = 0.0;
else
{
t2 *= t2;
n2 = t2 * t2 * _dot2(_grad3[gi2], x2, y2);
}
/* Add contributions from each corner to get the final noise value.
The result is scaled to return values in the interval [-1,1]. */
return 70.0 * (n0 + n1 + n2);
}
double simplexNoiseGet3DValue(double xin, double yin, double zin)
{
double n0, n1, n2, n3; /* Noise contributions from the four corners */
/* Skew the input space to determine which simplex cell we're in */
double s = (xin + yin + zin) * _F3; /* Very nice and simple skew factor for 3D */
int i = _fastfloor(xin + s);
int j = _fastfloor(yin + s);
int k = _fastfloor(zin + s);
double t = (i + j + k) * _G3;
double X0 = i - t; /* Unskew the cell origin back to (x,y,z) space */
double Y0 = j - t;
double Z0 = k - t;
double x0 = xin - X0; /* The x,y,z distances from the cell origin */
double y0 = yin - Y0;
double z0 = zin - Z0;
/* For the 3D case, the simplex shape is a slightly irregular tetrahedron.
Determine which simplex we are in. */
int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */
if (x0 >= y0)
{
if (y0 >= z0)
{
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} /* X Y Z order */
else if (x0 >= z0)
{
i1 = 1;
j1 = 0;
k1 = 0;
i2 = 1;
j2 = 0;
k2 = 1;
} /* X Z Y order */
else
{
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 1;
j2 = 0;
k2 = 1;
} /* Z X Y order */
}
else
{ /* x0<y0 */
if (y0 < z0)
{
i1 = 0;
j1 = 0;
k1 = 1;
i2 = 0;
j2 = 1;
k2 = 1;
} /* Z Y X order */
else if (x0 < z0)
{
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 0;
j2 = 1;
k2 = 1;
} /* Y Z X order */
else
{
i1 = 0;
j1 = 1;
k1 = 0;
i2 = 1;
j2 = 1;
k2 = 0;
} /* Y X Z order */
}
/* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
c = 1/6. */
double x1 = x0 - i1 + _G3; /* Offsets for second corner in (x,y,z) coords */
double y1 = y0 - j1 + _G3;
double z1 = z0 - k1 + _G3;
double x2 = x0 - i2 + 2.0 * _G3; /* Offsets for third corner in (x,y,z) coords */
double y2 = y0 - j2 + 2.0 * _G3;
double z2 = z0 - k2 + 2.0 * _G3;
double x3 = x0 - 1.0 + 3.0 * _G3; /* Offsets for last corner in (x,y,z) coords */
double y3 = y0 - 1.0 + 3.0 * _G3;
double z3 = z0 - 1.0 + 3.0 * _G3;
/* Work out the hashed gradient indices of the four simplex corners */
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int gi0 = _permutationsMod12[ii + _permutations2[jj + _permutations2[kk]]];
int gi1 = _permutationsMod12[ii + i1 + _permutations2[jj + j1 + _permutations2[kk + k1]]];
int gi2 = _permutationsMod12[ii + i2 + _permutations2[jj + j2 + _permutations2[kk + k2]]];
int gi3 = _permutationsMod12[ii + 1 + _permutations2[jj + 1 + _permutations2[kk + 1]]];
/* Calculate the contribution from the four corners */
double t0 = 0.6 - x0 * x0 - y0 * y0 - z0*z0;
if (t0 < 0) n0 = 0.0;
else
{
t0 *= t0;
n0 = t0 * t0 * _dot3(_grad3[gi0], x0, y0, z0);
}
double t1 = 0.6 - x1 * x1 - y1 * y1 - z1*z1;
if (t1 < 0) n1 = 0.0;
else
{
t1 *= t1;
n1 = t1 * t1 * _dot3(_grad3[gi1], x1, y1, z1);
}
double t2 = 0.6 - x2 * x2 - y2 * y2 - z2*z2;
if (t2 < 0) n2 = 0.0;
else
{
t2 *= t2;
n2 = t2 * t2 * _dot3(_grad3[gi2], x2, y2, z2);
}
double t3 = 0.6 - x3 * x3 - y3 * y3 - z3*z3;
if (t3 < 0) n3 = 0.0;
else
{
t3 *= t3;
n3 = t3 * t3 * _dot3(_grad3[gi3], x3, y3, z3);
}
/* Add contributions from each corner to get the final noise value.
The result is scaled to stay just inside [-1,1] */
return 32.0 * (n0 + n1 + n2 + n3);
}
double simplexNoiseGet4DValue(double x, double y, double z, double w)
{
double n0, n1, n2, n3, n4; /* Noise contributions from the five corners */
/* Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in */
double s = (x + y + z + w) * _F4; /* Factor for 4D skewing */
int i = _fastfloor(x + s);
int j = _fastfloor(y + s);
int k = _fastfloor(z + s);
int l = _fastfloor(w + s);
double t = (i + j + k + l) * _G4; /* Factor for 4D unskewing */
double X0 = i - t; /* Unskew the cell origin back to (x,y,z,w) space */
double Y0 = j - t;
double Z0 = k - t;
double W0 = l - t;
double x0 = x - X0; /* The x,y,z,w distances from the cell origin */
double y0 = y - Y0;
double z0 = z - Z0;
double w0 = w - W0;
/* For the 4D case, the simplex is a 4D shape I won't even try to describe.
To find out which of the 24 possible simplices we're in, we need to
determine the magnitude ordering of x0, y0, z0 and w0.
Six pair-wise comparisons are performed between each possible pair
of the four coordinates, and the results are used to rank the numbers. */
int rankx = 0;
int ranky = 0;
int rankz = 0;
int rankw = 0;
if (x0 > y0) rankx++;
else ranky++;
if (x0 > z0) rankx++;
else rankz++;
if (x0 > w0) rankx++;
else rankw++;
if (y0 > z0) ranky++;
else rankz++;
if (y0 > w0) ranky++;
else rankw++;
if (z0 > w0) rankz++;
else rankw++;
int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */
int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */
int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */
/* simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
impossible. Only the 24 indices which have non-zero entries make any sense.
We use a thresholding to set the coordinates in turn from the largest magnitude.
Rank 3 denotes the largest coordinate. */
i1 = rankx >= 3 ? 1 : 0;
j1 = ranky >= 3 ? 1 : 0;
k1 = rankz >= 3 ? 1 : 0;
l1 = rankw >= 3 ? 1 : 0;
/* Rank 2 denotes the second largest coordinate. */
i2 = rankx >= 2 ? 1 : 0;
j2 = ranky >= 2 ? 1 : 0;
k2 = rankz >= 2 ? 1 : 0;
l2 = rankw >= 2 ? 1 : 0;
/* Rank 1 denotes the second smallest coordinate. */
i3 = rankx >= 1 ? 1 : 0;
j3 = ranky >= 1 ? 1 : 0;
k3 = rankz >= 1 ? 1 : 0;
l3 = rankw >= 1 ? 1 : 0;
/* The fifth corner has all coordinate offsets = 1, so no need to compute that. */
double x1 = x0 - i1 + _G4; /* Offsets for second corner in (x,y,z,w) coords */
double y1 = y0 - j1 + _G4;
double z1 = z0 - k1 + _G4;
double w1 = w0 - l1 + _G4;
double x2 = x0 - i2 + 2.0 * _G4; /* Offsets for third corner in (x,y,z,w) coords */
double y2 = y0 - j2 + 2.0 * _G4;
double z2 = z0 - k2 + 2.0 * _G4;
double w2 = w0 - l2 + 2.0 * _G4;
double x3 = x0 - i3 + 3.0 * _G4; /* Offsets for fourth corner in (x,y,z,w) coords */
double y3 = y0 - j3 + 3.0 * _G4;
double z3 = z0 - k3 + 3.0 * _G4;
double w3 = w0 - l3 + 3.0 * _G4;
double x4 = x0 - 1.0 + 4.0 * _G4; /* Offsets for last corner in (x,y,z,w) coords */
double y4 = y0 - 1.0 + 4.0 * _G4;
double z4 = z0 - 1.0 + 4.0 * _G4;
double w4 = w0 - 1.0 + 4.0 * _G4;
/* Work out the hashed gradient indices of the five simplex corners */
int ii = i & 255;
int jj = j & 255;
int kk = k & 255;
int ll = l & 255;
int gi0 = _permutations2[ii + _permutations2[jj + _permutations2[kk + _permutations2[ll]]]] % 32;
int gi1 = _permutations2[ii + i1 + _permutations2[jj + j1 + _permutations2[kk + k1 + _permutations2[ll + l1]]]] % 32;
int gi2 = _permutations2[ii + i2 + _permutations2[jj + j2 + _permutations2[kk + k2 + _permutations2[ll + l2]]]] % 32;
int gi3 = _permutations2[ii + i3 + _permutations2[jj + j3 + _permutations2[kk + k3 + _permutations2[ll + l3]]]] % 32;
int gi4 = _permutations2[ii + 1 + _permutations2[jj + 1 + _permutations2[kk + 1 + _permutations2[ll + 1]]]] % 32;
/* Calculate the contribution from the five corners */
double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0*w0;
if (t0 < 0) n0 = 0.0;
else
{
t0 *= t0;
n0 = t0 * t0 * _dot4(_grad4[gi0], x0, y0, z0, w0);
}
double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1*w1;
if (t1 < 0) n1 = 0.0;
else
{
t1 *= t1;
n1 = t1 * t1 * _dot4(_grad4[gi1], x1, y1, z1, w1);
}
double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2*w2;
if (t2 < 0) n2 = 0.0;
else
{
t2 *= t2;
n2 = t2 * t2 * _dot4(_grad4[gi2], x2, y2, z2, w2);
}
double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3*w3;
if (t3 < 0) n3 = 0.0;
else
{
t3 *= t3;
n3 = t3 * t3 * _dot4(_grad4[gi3], x3, y3, z3, w3);
}
double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4*w4;
if (t4 < 0) n4 = 0.0;
else
{
t4 *= t4;
n4 = t4 * t4 * _dot4(_grad4[gi4], x4, y4, z4, w4);
}
/* Sum up and scale the result to cover the range [-1,1] */
return 27.0 * (n0 + n1 + n2 + n3 + n4);
}

View file

@ -0,0 +1,17 @@
#ifndef _PAYSAGES_SIMPLEXNOISE_H_
#define _PAYSAGES_SIMPLEXNOISE_H_
#ifdef __cplusplus
extern "C" {
#endif
void simplexNoiseInit();
double simplexNoiseGet2DValue(double xin, double yin);
double simplexNoiseGet3DValue(double xin, double yin, double zin);
double simplexNoiseGet4DValue(double x, double y, double z, double w);
#ifdef __cplusplus
}
#endif
#endif

View file

@ -15,7 +15,6 @@ TerrainCanvas* terrainCanvasCreate()
heightmapChangeResolution(&result->height_map, 256, 256);
result->height_factor = 1.0;
result->detail_noise = noiseCreateGenerator();
noiseGenerateBaseNoise(result->detail_noise, 1048576);
noiseAddLevelsSimple(result->detail_noise, 5, 1.0, 1.0);
result->detail_height_factor = 0.2;
result->detail_scaling = 0.4;

View file

@ -64,7 +64,6 @@ TextureLayerDefinition* texturesLayerCreateDefinition()
result->zone = zoneCreate();
result->bump_noise = noiseCreateGenerator();
noiseGenerateBaseNoise(result->bump_noise, 102400);
noiseAddLevelsSimple(result->bump_noise, 8, 1.0, 1.0);
result->bump_height = 0.1;
result->bump_scaling = 0.1;