#include "sky.h" #include #include #include "shared/types.h" #include "color.h" #include "clouds.h" #include "euclid.h" #include "lighting.h" #include "render.h" #include "tools.h" #define SPHERE_SIZE 1000.0 void skyInit() { } void skyQuit() { } void skySave(PackStream* stream, SkyDefinition* definition) { packWriteDouble(stream, &definition->daytime); colorGradationSave(stream, definition->sun_color); packWriteDouble(stream, &definition->sun_radius); packWriteDouble(stream, &definition->sun_halo_size); curveSave(stream, definition->sun_halo_profile); colorGradationSave(stream, definition->zenith_color); colorGradationSave(stream, definition->haze_color); packWriteDouble(stream, &definition->haze_height); packWriteDouble(stream, &definition->haze_smoothing); } void skyLoad(PackStream* stream, SkyDefinition* definition) { packReadDouble(stream, &definition->daytime); colorGradationLoad(stream, definition->sun_color); packReadDouble(stream, &definition->sun_radius); packReadDouble(stream, &definition->sun_halo_size); curveLoad(stream, definition->sun_halo_profile); colorGradationLoad(stream, definition->zenith_color); colorGradationLoad(stream, definition->haze_color); packReadDouble(stream, &definition->haze_height); packReadDouble(stream, &definition->haze_smoothing); skyValidateDefinition(definition); } SkyDefinition skyCreateDefinition() { SkyDefinition def; def.daytime = 0.0; def.sun_color = colorGradationCreate(); def.sun_radius = 1.0; def.sun_halo_size = 0.0; def.sun_halo_profile = curveCreate(); def.zenith_color = colorGradationCreate(); def.haze_color = colorGradationCreate(); def.haze_height = 0.0; def.haze_smoothing = 0.0; skyValidateDefinition(&def); return def; } void skyDeleteDefinition(SkyDefinition* definition) { curveDelete(definition->sun_halo_profile); colorGradationDelete(definition->sun_color); colorGradationDelete(definition->zenith_color); colorGradationDelete(definition->haze_color); } void skyCopyDefinition(SkyDefinition* source, SkyDefinition* destination) { destination->daytime = source->daytime; destination->sun_radius = source->sun_radius; destination->sun_halo_size = source->sun_halo_size; destination->haze_height = source->haze_height; destination->haze_smoothing = source->haze_smoothing; curveCopy(source->sun_halo_profile, destination->sun_halo_profile); colorGradationCopy(source->sun_color, destination->sun_color); colorGradationCopy(source->zenith_color, destination->zenith_color); colorGradationCopy(source->haze_color, destination->haze_color); colorGradationCopy(source->_sky_gradation, destination->_sky_gradation); } void skyValidateDefinition(SkyDefinition* definition) { Color zenith, haze; zenith = colorGradationGet(definition->zenith_color, definition->daytime); haze = colorGradationGet(definition->haze_color, definition->daytime); definition->_sky_gradation = colorGradationCreate(); colorGradationQuickAdd(definition->_sky_gradation, 0.0, &haze); colorGradationQuickAdd(definition->_sky_gradation, definition->haze_height - definition->haze_smoothing, &haze); colorGradationQuickAdd(definition->_sky_gradation, definition->haze_height, &zenith); colorGradationQuickAdd(definition->_sky_gradation, 1.0, &zenith); } int skyGetLights(SkyDefinition* sky, LightDefinition* lights, int max_lights) { double sun_angle; Vector3 sun_direction; int nblights = 0; sun_angle = (sky->daytime + 0.75) * M_PI * 2.0; sun_direction.x = cos(sun_angle); sun_direction.y = sin(sun_angle); sun_direction.z = 0.0; /* TODO Night lights */ if (max_lights > 0) { /* Light from the sun */ lights[0].direction = v3Scale(sun_direction, -1.0); lights[0].color = colorGradationGet(sky->sun_color, sky->daytime); lights[0].reflection = 1.0; lights[0].filtered = 1; lights[0].masked = 1; lights[0].amplitude = 0.0; nblights = 1; if (max_lights > 1) { /* Skydome lighting */ lights[1].direction.x = 0.0; lights[1].direction.y = -1.0; lights[1].direction.z = 0.0; lights[1].color = colorGradationGet(sky->zenith_color, sky->daytime); lights[1].color.r *= 0.6; lights[1].color.g *= 0.6; lights[1].color.b *= 0.6; lights[1].reflection = 0.0; lights[1].filtered = 1; lights[1].masked = 0; lights[1].amplitude = M_PI / 2.0; nblights = 2; } } return nblights; } static inline double _angleBetween(double thetav, double phiv, double theta, double phi) { double cospsi = sin(thetav) * sin(theta) * cos(phi-phiv) + cos(thetav) * cos(theta); if (cospsi > 1.0) return 0.0; if (cospsi < -1.0) return M_PI; return acos(cospsi); } static inline Color _toColor(float x, float y, float Y) { float fX, fY, fZ; Color result; fY = Y; fX = x / y * Y; fZ = ((1.0f - x - y) / y) * Y; float r, g, b; r = 3.2404f * fX - 1.5371f * fY - 0.4985f * fZ; g = -0.9692f * fX + 1.8759f * fY + 0.0415f * fZ; b = 0.0556f * fX - 0.2040f * fY + 1.0573f * fZ; float expo = -(1.0f / 10000.0f); r = 1.0f - exp(expo * r); g = 1.0f - exp(expo * g); b = 1.0f - exp(expo * b); if (r < 0.0f) r = 0.0f; if (g < 0.0f) g = 0.0f; if (b < 0.0f) b = 0.0f; result.r = r; result.g = g; result.b = b; result.a = 1.0; colorNormalize(&result); return result; } static Color _preethamApproximate(SkyDefinition* definition, double theta, double phi) { double thetaSun; double phiSun; double gamma; double turbidity = 2.0; /* Handle angles */ if (theta > M_PI / 2.0) { theta = M_PI / 2.0; } if (definition->daytime <= 0.5) { thetaSun = M_PI - definition->daytime * 2.0 * M_PI; phiSun = 0.0; } else { thetaSun = (definition->daytime - 0.5) * 2.0 * M_PI; phiSun = M_PI; } gamma = _angleBetween(theta, phi, thetaSun, phiSun); double cosTheta; if (theta > M_PI / 2.0) { cosTheta = 0.0000001; } else { cosTheta = cos(theta); } double T = turbidity; double T2 = T * T; double suntheta = thetaSun; double suntheta2 = thetaSun * thetaSun; double suntheta3 = thetaSun * suntheta2; double Ax = -0.01925 * T - 0.25922; double Bx = -0.06651 * T + 0.00081; double Cx = -0.00041 * T + 0.21247; double Dx = -0.06409 * T - 0.89887; double Ex = -0.00325 * T + 0.04517; double Ay = -0.01669 * T - 0.26078; double By = -0.09495 * T + 0.00921; double Cy = -0.00792 * T + 0.21023; double Dy = -0.04405 * T - 1.65369; double Ey = -0.01092 * T + 0.05291; double AY = 0.17872 * T - 1.46303; double BY = -0.35540 * T + 0.42749; double CY = -0.02266 * T + 5.32505; double DY = 0.12064 * T - 2.57705; double EY = -0.06696 * T + 0.37027; double cosGamma = cos(gamma); cosGamma = cosGamma < 0.0 ? 0.0 : cosGamma; double cosSTheta = fabs(cos(thetaSun)); double xz = ( 0.00165 * suntheta3 - 0.00375 * suntheta2 + 0.00209 * suntheta + 0.00000) * T2 + (-0.02903 * suntheta3 + 0.06377 * suntheta2 - 0.03202 * suntheta + 0.00394) * T + ( 0.11693 * suntheta3 - 0.21196 * suntheta2 + 0.06052 * suntheta + 0.25886); double yz = ( 0.00275 * suntheta3 - 0.00610 * suntheta2 + 0.00317 * suntheta + 0.00000) * T2 + (-0.04214 * suntheta3 + 0.08970 * suntheta2 - 0.04153 * suntheta + 0.00516) * T + ( 0.15346 * suntheta3 - 0.26756 * suntheta2 + 0.06670 * suntheta + 0.26688); double X = (4.0f / 9.0f - T / 120.0f) * (M_PI - 2.0 * suntheta); double Yz = ((4.0453f * T - 4.9710) * tan(X) - 0.2155 * T + 2.4192) * 1000.0f; double val1, val2; val1 = ( 1 + Ax * exp(Bx / cosTheta ) ) * ( 1 + Cx * exp(Dx * gamma) + Ex * sqrt(cosGamma) ); val2 = ( 1 + Ax * exp(Bx) ) * ( 1 + Cx * exp(Dx * suntheta) + Ex * sqrt(cosSTheta) ); double x = xz * val1 / val2; val1 = ( 1 + Ay * exp(By / cosTheta) ) * ( 1 + Cy * exp(Dy * gamma ) + Ey * sqrt(cosGamma ) ); val2 = ( 1 + Ay * exp(By ) ) * ( 1 + Cy * exp(Dy * suntheta) + Ey * sqrt(cosSTheta) ); double y = yz * val1 / val2; val1 = ( 1 + AY * exp(BY / cosTheta) ) * ( 1 + CY * exp(DY * gamma ) + EY * sqrt(cosGamma) ); val2 = ( 1 + AY * exp(BY ) ) * ( 1 + CY * exp(DY * suntheta) + EY * sqrt(cosSTheta) ); double Y = Yz * val1 / val2; return _toColor(x, y, Y); } Color skyGetColor(SkyDefinition* definition, Renderer* renderer, Vector3 eye, Vector3 look) { double dist; Vector3 sun_position; Color sun_color, sky_color; sun_position = skyGetSunDirection(definition); look = v3Normalize(look); dist = v3Norm(v3Sub(look, sun_position)); sky_color = _preethamApproximate(definition, M_PI/2.0 - asin(look.y), atan2(-look.z, look.x)); if (dist < definition->sun_radius + definition->sun_halo_size) { sun_color = colorGradationGet(definition->sun_color, definition->daytime); if (dist <= definition->sun_radius) { return sun_color; } else { dist = (dist - definition->sun_radius) / definition->sun_halo_size; sun_color.a = curveGetValue(definition->sun_halo_profile, dist); colorMask(&sky_color, &sun_color); return sky_color; } } else { return sky_color; } } static Color _postProcessFragment(Renderer* renderer, Vector3 location, void* data) { Vector3 direction; Color result; SkyDefinition* definition; definition = (SkyDefinition*)data; direction = v3Sub(location, renderer->camera_location); result = skyGetColor(definition, renderer, renderer->camera_location, v3Normalize(direction)); result = renderer->applyClouds(renderer, result, renderer->camera_location, v3Add(renderer->camera_location, v3Scale(direction, 10.0))); return result; } void skyRender(SkyDefinition* definition, Renderer* renderer) { int res_i, res_j; int i, j; double step_i, step_j; double current_i, current_j; Vector3 vertex1, vertex2, vertex3, vertex4; Vector3 direction; res_i = renderer->render_quality * 40; res_j = renderer->render_quality * 20; step_i = M_PI * 2.0 / (double)res_i; step_j = M_PI / (double)res_j; for (j = 0; j < res_j; j++) { if (!renderer->addRenderProgress(renderer, 0.0)) { return; } current_j = (double)(j - res_j / 2) * step_j; for (i = 0; i < res_i; i++) { current_i = (double)i * step_i; direction.x = SPHERE_SIZE * cos(current_i) * cos(current_j); direction.y = SPHERE_SIZE * sin(current_j); direction.z = SPHERE_SIZE * sin(current_i) * cos(current_j); vertex1 = v3Add(renderer->camera_location, direction); direction.x = SPHERE_SIZE * cos(current_i + step_i) * cos(current_j); direction.y = SPHERE_SIZE * sin(current_j); direction.z = SPHERE_SIZE * sin(current_i + step_i) * cos(current_j); vertex2 = v3Add(renderer->camera_location, direction); direction.x = SPHERE_SIZE * cos(current_i + step_i) * cos(current_j + step_j); direction.y = SPHERE_SIZE * sin(current_j + step_j); direction.z = SPHERE_SIZE * sin(current_i + step_i) * cos(current_j + step_j); vertex3 = v3Add(renderer->camera_location, direction); direction.x = SPHERE_SIZE * cos(current_i) * cos(current_j + step_j); direction.y = SPHERE_SIZE * sin(current_j + step_j); direction.z = SPHERE_SIZE * sin(current_i) * cos(current_j + step_j); vertex4 = v3Add(renderer->camera_location, direction); /* TODO Triangles at poles */ renderer->pushQuad(renderer, vertex1, vertex4, vertex3, vertex2, _postProcessFragment, definition); } } } Vector3 skyGetSunDirection(SkyDefinition* definition) { Vector3 result; double sun_angle = (definition->daytime + 0.75) * M_PI * 2.0; result.x = cos(sun_angle); result.y = sin(sun_angle); result.z = 0.0; return result; } Color skyGetSunColor(SkyDefinition* definition) { return colorGradationGet(definition->sun_color, definition->daytime); } Color skyGetZenithColor(SkyDefinition* definition) { return colorGradationGet(definition->zenith_color, definition->daytime); }