#include "CloudBasicLayerRenderer.h" #include #include #include "CloudLayerDefinition.h" #include "SoftwareRenderer.h" #include "NoiseGenerator.h" #include "Curve.h" #include "AtmosphereRenderer.h" #include "AtmosphereResult.h" #include "LightComponent.h" #include "clouds/BaseCloudsModel.h" #include "SurfaceMaterial.h" #include "Logs.h" #include "FloatNode.h" struct CloudSegment { Vector3 start; Vector3 end; double length; }; CloudBasicLayerRenderer::CloudBasicLayerRenderer(SoftwareRenderer *parent) : BaseCloudLayerRenderer(parent) { } static inline double _getDistanceToBorder(BaseCloudsModel *model, const Vector3 &position) { return model->getDensity(position); } /** * Go through the cloud layer to find segments (parts of the lookup that are inside the cloud). * * definition - The cloud layer * renderer - The renderer environment * start - Start position of the lookup (already optimized) * direction - Normalized direction of the lookup * detail - Level of noise detail required * max_segments - Maximum number of segments to collect * max_inside_length - Maximum length to spend inside the cloud * max_total_length - Maximum lookup length * inside_length - Resulting length inside cloud (sum of all segments length) * total_length - Resulting lookup length * out_segments - Allocated space to fill found segments * * Returns the number of segments found. */ int CloudBasicLayerRenderer::findSegments(BaseCloudsModel *model, const Vector3 &start, const Vector3 &direction, int max_segments, double max_inside_length, double max_total_length, double *inside_length, double *total_length, CloudSegment *out_segments) { double ymin, ymax; int inside, segment_count; double current_total_length, current_inside_length; double step_length, segment_length; double min_step, max_step; double noise_distance; Vector3 walker, step, segment_start, offset; double render_precision; if (max_segments <= 0) { return 0; } model->getAltitudeRange(&ymin, &ymax); model->getDetailRange(&min_step, &max_step); render_precision = max_step - quality * (max_step - min_step); if (render_precision > max_total_length / 10.0) { render_precision = max_total_length / 10.0; } else if (render_precision < max_total_length / 2000.0) { render_precision = max_total_length / 2000.0; } segment_count = 0; current_total_length = 0.0; current_inside_length = 0.0; segment_length = 0.0; walker = start; offset = Vector3(model->getLayer()->propXOffset()->getValue(), 0.0, model->getLayer()->propZOffset()->getValue()); noise_distance = _getDistanceToBorder(model, start.add(offset)) * render_precision; inside = 0; step = direction.scale(render_precision); do { walker = walker.add(step); step_length = step.getNorm(); noise_distance = _getDistanceToBorder(model, walker.add(offset)) * render_precision; current_total_length += step_length; if (noise_distance > 0.0) { if (inside) { // inside the cloud segment_length += step_length; current_inside_length += step_length; step = direction.scale((noise_distance < render_precision) ? render_precision : noise_distance); } else { // entering the cloud inside = 1; segment_length = 0.0; segment_start = walker; current_inside_length += segment_length; step = direction.scale(render_precision); } } else { if (inside) { // exiting the cloud segment_length += step_length; current_inside_length += step_length; out_segments->start = segment_start; out_segments->end = walker; out_segments->length = segment_length; out_segments++; if (++segment_count >= max_segments) { break; } inside = 0; step = direction.scale(render_precision); } else { // searching for a cloud step = direction.scale((noise_distance > -render_precision) ? render_precision : -noise_distance); } } } while (inside || (walker.y >= ymin - 0.001 && walker.y <= ymax + 0.001 && current_total_length < max_total_length && current_inside_length < max_inside_length)); *total_length = current_total_length; *inside_length = current_inside_length; return segment_count; } Color CloudBasicLayerRenderer::getColor(BaseCloudsModel *model, const Vector3 &eye, const Vector3 &location) { int i, segment_count; double max_length, total_length, inside_length; Vector3 start, end, direction; Color result, col; CloudSegment segments[20]; start = eye; end = location; if (!optimizeSearchLimits(model, &start, &end)) { return COLOR_TRANSPARENT; } direction = end.sub(start); max_length = direction.getNorm(); direction = direction.normalize(); result = COLOR_TRANSPARENT; double ymin, ymax; model->getAltitudeRange(&ymin, &ymax); double transparency_depth = (ymax - ymin) * 0.5; segment_count = findSegments(model, start, direction, 20, transparency_depth, max_length, &inside_length, &total_length, segments); for (i = segment_count - 1; i >= 0; i--) { SurfaceMaterial material(COLOR_WHITE); material.hardness = 0.25; material.reflection = 0.0; material.shininess = 0.0; material.validate(); col = parent->applyLightingToSurface(segments[i].start, parent->getAtmosphereRenderer()->getSunDirection(), material); // Boost highly lighted area double boost = 1.0 + (col.getPower() * col.getPower()); col.r *= boost; col.g *= boost; col.b *= boost; col.a = (segments[i].length >= transparency_depth) ? 1.0 : (segments[i].length / transparency_depth); result.mask(col); } // Opacify when hitting inside_length limit if (inside_length >= transparency_depth) { result.a = 1.0; } else if (inside_length >= transparency_depth * 0.8) { result.a += (1.0 - result.a) * ((inside_length - transparency_depth * 0.8) / (transparency_depth * 0.2)); } // Apply aerial perspective if (result.a > 0.00001) { assert(segment_count > 0); double a = result.a; // TODO Don't apply it only at first segment result = parent->getAtmosphereRenderer()->applyAerialPerspective(segments[0].start, result).final; result.a = a; } return result; } bool CloudBasicLayerRenderer::alterLight(BaseCloudsModel *model, LightComponent *light, const Vector3 &, const Vector3 &location) { Vector3 start, end, direction; double inside_depth, total_depth, factor; CloudSegment segments[20]; start = location; direction = light->direction.scale(-1.0); end = location.add(direction.scale(10000.0)); if (not optimizeSearchLimits(model, &start, &end)) { return false; } double ymin, ymax; model->getAltitudeRange(&ymin, &ymax); double light_traversal = (ymax - ymin) * 1.2; findSegments(model, start, direction, 20, light_traversal, end.sub(start).getNorm(), &inside_depth, &total_depth, segments); if (light_traversal < 0.0001) { factor = 0.0; } else { factor = inside_depth / light_traversal; if (factor > 1.0) { factor = 1.0; } else if (factor > 0.00001) { factor = sqrt(factor); } } double miminum_light = 0.3; factor = 1.0 - (1.0 - miminum_light) * factor; light->color.r *= factor; light->color.g *= factor; light->color.b *= factor; return true; }