#include "clouds.h" #include #include #include #include "color.h" #include "euclid.h" #include "lighting.h" #include "tools.h" #include "shared/types.h" #define MAX_SEGMENT_COUNT 30 typedef struct { Vector3 start; Vector3 end; double length; } CloudSegment; static CloudsLayerDefinition NULL_LAYER; void cloudsInit() { NULL_LAYER = cloudsLayerCreateDefinition();; cloudsLayerValidateDefinition(&NULL_LAYER); } void cloudsQuit() { cloudsLayerDeleteDefinition(&NULL_LAYER); } void cloudsSave(PackStream* stream, CloudsDefinition* definition) { int i; CloudsLayerDefinition* layer; packWriteInt(stream, &definition->nblayers); for (i = 0; i < definition->nblayers; i++) { layer = definition->layers + i; packWriteString(stream, layer->name, CLOUDS_MAX_NAME_LENGTH); packWriteDouble(stream, &layer->lower_altitude); packWriteDouble(stream, &layer->thickness); curveSave(stream, layer->coverage_by_altitude); noiseSaveGenerator(stream, layer->shape_noise); noiseSaveGenerator(stream, layer->edge_noise); materialSave(stream, &layer->material); packWriteDouble(stream, &layer->hardness); packWriteDouble(stream, &layer->transparencydepth); packWriteDouble(stream, &layer->lighttraversal); packWriteDouble(stream, &layer->minimumlight); packWriteDouble(stream, &layer->shape_scaling); packWriteDouble(stream, &layer->edge_scaling); packWriteDouble(stream, &layer->edge_length); packWriteDouble(stream, &layer->base_coverage); } } void cloudsLoad(PackStream* stream, CloudsDefinition* definition) { int i, n; CloudsLayerDefinition* layer; while (definition->nblayers > 0) { cloudsDeleteLayer(definition, 0); } packReadInt(stream, &n); for (i = 0; i < n; i++) { layer = definition->layers + cloudsAddLayer(definition); packReadString(stream, layer->name, CLOUDS_MAX_NAME_LENGTH); packReadDouble(stream, &layer->lower_altitude); packReadDouble(stream, &layer->thickness); curveLoad(stream, layer->coverage_by_altitude); noiseLoadGenerator(stream, layer->shape_noise); noiseLoadGenerator(stream, layer->edge_noise); materialLoad(stream, &layer->material); packReadDouble(stream, &layer->hardness); packReadDouble(stream, &layer->transparencydepth); packReadDouble(stream, &layer->lighttraversal); packReadDouble(stream, &layer->minimumlight); packReadDouble(stream, &layer->shape_scaling); packReadDouble(stream, &layer->edge_scaling); packReadDouble(stream, &layer->edge_length); packReadDouble(stream, &layer->base_coverage); } } CloudsDefinition cloudsCreateDefinition() { CloudsDefinition result; result.nblayers = 0; return result; } void cloudsDeleteDefinition(CloudsDefinition* definition) { while (definition->nblayers > 0) { cloudsDeleteLayer(definition, 0); } } void cloudsCopyDefinition(CloudsDefinition* source, CloudsDefinition* destination) { CloudsLayerDefinition* layer; int i; while (destination->nblayers > 0) { cloudsDeleteLayer(destination, 0); } for (i = 0; i < source->nblayers; i++) { layer = cloudsGetLayer(destination, cloudsAddLayer(destination)); cloudsLayerCopyDefinition(source->layers + i, layer); } } void cloudsValidateDefinition(CloudsDefinition* definition) { int i; for (i = 0; i < definition->nblayers; i++) { cloudsLayerValidateDefinition(&definition->layers[i]); } } static double _standardCoverageFunc(CloudsLayerDefinition* layer, Vector3 position) { if (position.y < layer->lower_altitude || position.y >= layer->lower_altitude + layer->thickness) { return 0.0; } else { return layer->base_coverage * curveGetValue(layer->coverage_by_altitude, (position.y - layer->lower_altitude) / layer->thickness); } } CloudsLayerDefinition cloudsLayerCreateDefinition() { CloudsLayerDefinition result; cloudsLayerSetName(&result, "Unnamed"); result.lower_altitude = 4.0; result.thickness = 6.0; result.coverage_by_altitude = curveCreate(); curveQuickAddPoint(result.coverage_by_altitude, 0.0, 0.0); curveQuickAddPoint(result.coverage_by_altitude, 0.3, 1.0); curveQuickAddPoint(result.coverage_by_altitude, 0.5, 1.0); curveQuickAddPoint(result.coverage_by_altitude, 1.0, 0.0); result.material.base.r = 0.7; result.material.base.g = 0.7; result.material.base.b = 0.7; result.material.base.a = 1.0; result.material.reflection = 0.3; result.material.shininess = 0.8; result.hardness = 0.25; result.transparencydepth = 1.5; result.lighttraversal = 7.0; result.minimumlight = 0.4; result.shape_scaling = 3.5; result.edge_scaling = 0.07; result.edge_length = 0.2; result.base_coverage = 0.35; result.shape_noise = noiseCreateGenerator(); noiseGenerateBaseNoise(result.shape_noise, 200000); noiseAddLevelsSimple(result.shape_noise, 5, 1.0, 1.0); result.edge_noise = noiseCreateGenerator(); noiseGenerateBaseNoise(result.edge_noise, 800000); noiseAddLevelsSimple(result.edge_noise, 8, 1.0, 1.0); result._custom_coverage = _standardCoverageFunc; return result; } void cloudsLayerDeleteDefinition(CloudsLayerDefinition* definition) { noiseDeleteGenerator(definition->shape_noise); } void cloudsLayerCopyDefinition(CloudsLayerDefinition* source, CloudsLayerDefinition* destination) { CloudsLayerDefinition temp; if (destination == &NULL_LAYER) { return; } temp = *destination; *destination = *source; destination->shape_noise = temp.shape_noise; noiseCopy(source->shape_noise, destination->shape_noise); destination->edge_noise = temp.edge_noise; noiseCopy(source->edge_noise, destination->edge_noise); destination->coverage_by_altitude = temp.coverage_by_altitude; curveCopy(source->coverage_by_altitude, destination->coverage_by_altitude); } void cloudsLayerValidateDefinition(CloudsLayerDefinition* definition) { definition->name[CLOUDS_MAX_NAME_LENGTH] = '\0'; if (definition->shape_scaling < 0.0001) { definition->shape_scaling = 0.00001; } if (definition->edge_scaling < 0.0001) { definition->edge_scaling = 0.00001; } if (definition->_custom_coverage == NULL) { definition->_custom_coverage = _standardCoverageFunc; } } void cloudsLayerSetName(CloudsLayerDefinition* definition, const char* name) { strncpy(definition->name, name, CLOUDS_MAX_NAME_LENGTH); } int cloudsGetLayerCount(CloudsDefinition* definition) { return definition->nblayers; } CloudsLayerDefinition* cloudsGetLayer(CloudsDefinition* definition, int layer) { if (layer >= 0 && layer < definition->nblayers) { return definition->layers + layer; } else { return &NULL_LAYER; } } int cloudsAddLayer(CloudsDefinition* definition) { CloudsLayerDefinition* layer; if (definition->nblayers < CLOUDS_MAX_LAYERS) { layer = definition->layers + definition->nblayers; *layer = cloudsLayerCreateDefinition(); return definition->nblayers++; } else { return -1; } } void cloudsDeleteLayer(CloudsDefinition* definition, int layer) { if (layer >= 0 && layer < definition->nblayers) { cloudsLayerDeleteDefinition(definition->layers + layer); if (definition->nblayers > 1 && layer < definition->nblayers - 1) { memmove(definition->layers + layer, definition->layers + layer + 1, sizeof(CloudsLayerDefinition) * (definition->nblayers - layer - 1)); } definition->nblayers--; } } void cloudsMoveLayer(CloudsDefinition* definition, int layer, int new_position) { if (layer >= 0 && layer < definition->nblayers && new_position != layer && new_position >= 0 && new_position < definition->nblayers) { CloudsLayerDefinition temp; temp = definition->layers[layer]; if (new_position > layer) { memmove(definition->layers + layer, definition->layers + layer + 1, sizeof(CloudsLayerDefinition) * (new_position - layer)); } else { memmove(definition->layers + new_position + 1, definition->layers + new_position, sizeof(CloudsLayerDefinition) * (layer - new_position)); } definition->layers[new_position] = temp; } } static inline double _getDistanceToBorder(CloudsLayerDefinition* layer, Vector3 position) { double density, coverage, val; val = noiseGet3DTotal(layer->shape_noise, position.x / layer->shape_scaling, position.y / layer->shape_scaling, position.z / layer->shape_scaling) / noiseGetMaxValue(layer->shape_noise); coverage = layer->_custom_coverage(layer, position); density = 0.5 * val - 0.5 + coverage; if (density <= 0.0) { /* outside the main shape */ return density * layer->shape_scaling; } else { /* inside the main shape, using edge noise */ density /= coverage; if (density < layer->edge_length) { density /= layer->edge_length; val = 0.5 * noiseGet3DTotal(layer->edge_noise, position.x / layer->edge_scaling, position.y / layer->edge_scaling, position.z / layer->edge_scaling) / noiseGetMaxValue(layer->edge_noise); val = val - 0.5 + density; return val * (density * coverage * layer->shape_scaling + (1.0 - density) * layer->edge_scaling); } else { return density * coverage * layer->shape_scaling; } } } static inline Vector3 _getNormal(CloudsLayerDefinition* layer, Vector3 position, double detail) { Vector3 result = {0.0, 0.0, 0.0}; Vector3 dposition; double val, dval; val = _getDistanceToBorder(layer, position); dposition.x = position.x + detail; dposition.y = position.y; dposition.z = position.z; dval = val - _getDistanceToBorder(layer, dposition); result.x += dval; dposition.x = position.x - detail; dval = val - _getDistanceToBorder(layer, dposition); result.x -= dval; dposition.x = position.x; dposition.y = position.y + detail; dval = val - _getDistanceToBorder(layer, dposition); result.y += dval; dposition.y = position.y - detail; dval = val - _getDistanceToBorder(layer, dposition); result.y -= dval; dposition.y = position.y; dposition.z = position.z + detail; dval = val - _getDistanceToBorder(layer, dposition); result.z += dval; dposition.z = position.z - detail; dval = val - _getDistanceToBorder(layer, dposition); result.z -= dval; return v3Normalize(result); } /** * Optimize the search limits in a layer. * * @param layer The cloud layer * @param start Start of the search to optimize * @param end End of the search to optimize * @return 0 if the search is useless */ static int _optimizeSearchLimits(CloudsLayerDefinition* layer, Vector3* start, Vector3* end) { Vector3 diff; if (start->y > layer->lower_altitude + layer->thickness) { if (end->y >= layer->lower_altitude + layer->thickness) { return 0; } else { diff = v3Sub(*end, *start); *start = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y)); if (end->y < layer->lower_altitude) { *end = v3Add(*end, v3Scale(diff, (layer->lower_altitude - end->y) / diff.y)); } } } else if (start->y < layer->lower_altitude) { if (end->y <= layer->lower_altitude) { return 0; } else { diff = v3Sub(*end, *start); *start = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y)); if (end->y >= layer->lower_altitude + layer->thickness) { *end = v3Add(*end, v3Scale(diff, (layer->lower_altitude + layer->thickness - end->y) / diff.y)); } } } else /* start is inside layer */ { diff = v3Sub(*end, *start); if (end->y > layer->thickness) { *end = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y)); } else if (end->y < layer->lower_altitude) { *end = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y)); } } /* TODO Limit the search length */ return 1; } /** * Go through the cloud layer to find segments (parts of the lookup that are inside the cloud). * * @param definition The cloud layer * @param renderer The renderer environment * @param start Start position of the lookup (already optimized) * @param direction Normalized direction of the lookup * @param detail Level of noise detail required * @param max_segments Maximum number of segments to collect * @param max_inside_length Maximum length to spend inside the cloud * @param max_total_length Maximum lookup length * @param inside_length Resulting length inside cloud (sum of all segments length) * @param total_length Resulting lookup length * @param out_segments Allocated space to fill found segments * @return Number of segments found */ static int _findSegments(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 start, Vector3 direction, double detail, int max_segments, double max_inside_length, double max_total_length, double* inside_length, double* total_length, CloudSegment* out_segments) { int inside, segment_count; double current_total_length, current_inside_length; double step_length, segment_length, remaining_length; double noise_distance, last_noise_distance; Vector3 walker, step, segment_start; double render_precision; if (max_segments <= 0) { return 0; } render_precision = 15.2 - 1.5 * (double)renderer->render_quality; render_precision = render_precision * definition->shape_scaling / 50.0; if (render_precision > max_total_length / 10.0) { render_precision = max_total_length / 10.0; } else if (render_precision < max_total_length / 2000.0) { render_precision = max_total_length / 2000.0; } segment_count = 0; current_total_length = 0.0; current_inside_length = 0.0; segment_length = 0.0; walker = start; noise_distance = _getDistanceToBorder(definition, start) * render_precision; inside = (noise_distance > 0.0) ? 1 : 0; step = v3Scale(direction, render_precision); do { walker = v3Add(walker, step); step_length = v3Norm(step); last_noise_distance = noise_distance; noise_distance = _getDistanceToBorder(definition, walker) * render_precision; current_total_length += step_length; if (current_total_length >= max_total_length || current_inside_length > max_inside_length) { noise_distance = 0.0; } if (noise_distance > 0.0) { if (inside) { // inside the cloud segment_length += step_length; current_inside_length += step_length; step = v3Scale(direction, (noise_distance < render_precision) ? render_precision : noise_distance); } else { // entering the cloud inside = 1; segment_length = step_length * noise_distance / (noise_distance - last_noise_distance); segment_start = v3Add(walker, v3Scale(direction, -segment_length)); current_inside_length += segment_length; step = v3Scale(direction, render_precision); } } else { if (inside) { // exiting the cloud remaining_length = step_length * last_noise_distance / (last_noise_distance - noise_distance); segment_length += remaining_length; current_inside_length += remaining_length; out_segments->start = segment_start; out_segments->end = v3Add(walker, v3Scale(direction, remaining_length - step_length)); out_segments->length = segment_length; out_segments++; if (++segment_count >= max_segments) { break; } inside = 0; step = v3Scale(direction, render_precision); } else { // searching for a cloud step = v3Scale(direction, (noise_distance > -render_precision) ? render_precision : -noise_distance); } } } while (inside || (walker.y <= definition->lower_altitude + definition->thickness + 0.001 && walker.y >= definition->lower_altitude - 0.001 && current_total_length < max_total_length && current_inside_length < max_inside_length)); *total_length = current_total_length; *inside_length = current_inside_length; return segment_count; } static Color _applyLayerLighting(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 position, double detail) { Vector3 normal; Color col1, col2; LightStatus light; normal = _getNormal(definition, position, 3.0); if (renderer->render_quality > 5) { normal = v3Add(normal, _getNormal(definition, position, 2.0)); normal = v3Add(normal, _getNormal(definition, position, 1.0)); } if (renderer->render_quality > 5) { normal = v3Add(normal, _getNormal(definition, position, 0.5)); } normal = v3Scale(v3Normalize(normal), definition->hardness); renderer->getLightStatus(renderer, &light, position); col1 = renderer->applyLightStatus(renderer, &light, position, normal, definition->material); col2 = renderer->applyLightStatus(renderer, &light, position, v3Scale(normal, -1.0), definition->material); col1.r = (col1.r + col2.r) / 2.0; col1.g = (col1.g + col2.g) / 2.0; col1.b = (col1.b + col2.b) / 2.0; col1.a = (col1.a + col2.a) / 2.0; return col1; } Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end) { int i, segment_count; double max_length, detail, total_length, inside_length; Vector3 direction; Color col; CloudSegment segments[MAX_SEGMENT_COUNT]; if (!_optimizeSearchLimits(definition, &start, &end)) { return base; } direction = v3Sub(end, start); max_length = v3Norm(direction); direction = v3Normalize(direction); detail = renderer->getPrecision(renderer, start) / definition->shape_scaling; segment_count = _findSegments(definition, renderer, start, direction, detail, MAX_SEGMENT_COUNT, definition->transparencydepth * (double)renderer->render_quality, max_length, &inside_length, &total_length, segments); for (i = segment_count - 1; i >= 0; i--) { col = _applyLayerLighting(definition, renderer, segments[i].start, detail); col.a = 1.0; col = renderer->applyAtmosphere(renderer, start, col); col.a = (segments[i].length >= definition->transparencydepth) ? 1.0 : (segments[i].length / definition->transparencydepth); colorMask(&base, &col); } if (inside_length >= definition->transparencydepth) { col.a = 1.0; } return base; } static int _cmpLayer(const void* layer1, const void* layer2) { return (((CloudsLayerDefinition*)layer1)->lower_altitude > ((CloudsLayerDefinition*)layer2)->lower_altitude) ? -1 : 1; } Color cloudsApply(CloudsDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end) { int i; CloudsLayerDefinition layers[CLOUDS_MAX_LAYERS]; if (definition->nblayers < 1) { return base; } memcpy(layers, definition->layers, sizeof(CloudsLayerDefinition) * definition->nblayers); qsort(layers, definition->nblayers, sizeof(CloudsLayerDefinition), _cmpLayer); for (i = 0; i < definition->nblayers; i++) { base = cloudsApplyLayer(layers + i, base, renderer, start, end); } return base; } Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light) { double inside_depth, total_depth, factor; CloudSegment segments[MAX_SEGMENT_COUNT]; _optimizeSearchLimits(definition, &location, &light_location); _findSegments(definition, renderer, location, direction_to_light, 0.1, MAX_SEGMENT_COUNT, definition->lighttraversal, v3Norm(v3Sub(light_location, location)), &inside_depth, &total_depth, segments); if (definition->lighttraversal < 0.0001) { factor = 0.0; } else { factor = inside_depth / definition->lighttraversal; if (factor > 1.0) { factor = 1.0; } } factor = 1.0 - (1.0 - definition->minimumlight) * factor; light.r = light.r * factor; light.g = light.g * factor; light.b = light.b * factor; return light; } Color cloudsFilterLight(CloudsDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light) { int i; /* TODO Order layers ? */ for (i = 0; i < definition->nblayers; i++) { light = cloudsLayerFilterLight(definition->layers + i, renderer, light, location, light_location, direction_to_light); } return light; }