#include "NoiseFunctionSimplex.h" /* * Simplex noise implementation. * * Based on Stefan Gustavson implementation. */ #include #include #include #include "Texture2D.h" #include "Color.h" #include "Geometry.h" #include "Vector3.h" typedef struct { double x; double y; double z; } Grad3; typedef struct { double x; double y; double z; double w; } Grad4; static Grad3 _grad3[] = {{1, 1, 0}, {-1, 1, 0}, {1, -1, 0}, {-1, -1, 0}, {1, 0, 1}, {-1, 0, 1}, {1, 0, -1}, {-1, 0, -1}, {0, 1, 1}, {0, -1, 1}, {0, 1, -1}, {0, -1, -1}}; static Grad4 _grad4[] = {{0, 1, 1, 1}, {0, 1, 1, -1}, {0, 1, -1, 1}, {0, 1, -1, -1}, {0, -1, 1, 1}, {0, -1, 1, -1}, {0, -1, -1, 1}, {0, -1, -1, -1}, {1, 0, 1, 1}, {1, 0, 1, -1}, {1, 0, -1, 1}, {1, 0, -1, -1}, {-1, 0, 1, 1}, {-1, 0, 1, -1}, {-1, 0, -1, 1}, {-1, 0, -1, -1}, {1, 1, 0, 1}, {1, 1, 0, -1}, {1, -1, 0, 1}, {1, -1, 0, -1}, {-1, 1, 0, 1}, {-1, 1, 0, -1}, {-1, -1, 0, 1}, {-1, -1, 0, -1}, {1, 1, 1, 0}, {1, 1, -1, 0}, {1, -1, 1, 0}, {1, -1, -1, 0}, {-1, 1, 1, 0}, {-1, 1, -1, 0}, {-1, -1, 1, 0}, {-1, -1, -1, 0}}; static short _permutations[] = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180}; static short _permutations2[512]; static short _permutationsMod12[512]; static double _F2; static double _G2; static double _F3; static double _G3; static double _F4; static double _G4; static inline int _fastfloor(double x) { int xi = trunc_to_int(x); return x < xi ? xi - 1 : xi; } static inline double _dot2(Grad3 g, double x, double y) { return g.x * x + g.y * y; } static inline double _dot3(Grad3 g, double x, double y, double z) { return g.x * x + g.y * y + g.z * z; } static inline double _dot4(Grad4 g, double x, double y, double z, double w) { return g.x * x + g.y * y + g.z * z + g.w * w; } static int noiseSimplexInit() { int i; /* To remove the need for index wrapping, double the permutation table length */ for (i = 0; i < 512; i++) { _permutations2[i] = _permutations[i & 255]; _permutationsMod12[i] = (short)(_permutations2[i] % 12); } /* Skewing and unskewing factors for 2, 3, and 4 dimensions */ _F2 = 0.5 * (sqrt(3.0) - 1.0); _G2 = (3.0 - sqrt(3.0)) / 6.0; _F3 = 1.0 / 3.0; _G3 = 1.0 / 6.0; _F4 = (sqrt(5.0) - 1.0) / 4.0; _G4 = (5.0 - sqrt(5.0)) / 20.0; return 1; } static int _inited = noiseSimplexInit(); double noiseSimplexGet1DValue(double x) { /* TODO Find custom function */ return noiseSimplexGet2DValue(x, 0.0); } double noiseSimplexGet2DValue(double x, double y) { double n0, n1, n2; /* Noise contributions from the three corners */ /* Skew the input space to determine which simplex cell we're in */ double s = (x + y) * _F2; /* Hairy factor for 2D */ int i = _fastfloor(x + s); int j = _fastfloor(y + s); double t = (i + j) * _G2; double X0 = i - t; /* Unskew the cell origin back to (x,y) space */ double Y0 = j - t; double x0 = x - X0; /* The x,y distances from the cell origin */ double y0 = y - Y0; /* For the 2D case, the simplex shape is an equilateral triangle. Determine which simplex we are in. */ int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */ if (x0 > y0) { i1 = 1; j1 = 0; } /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */ else { i1 = 0; j1 = 1; } /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */ /* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where c = (3-sqrt(3))/6 */ double x1 = x0 - i1 + _G2; /* Offsets for middle corner in (x,y) unskewed coords */ double y1 = y0 - j1 + _G2; double x2 = x0 - 1.0 + 2.0 * _G2; /* Offsets for last corner in (x,y) unskewed coords */ double y2 = y0 - 1.0 + 2.0 * _G2; /* Work out the hashed gradient indices of the three simplex corners */ int ii = i & 255; int jj = j & 255; int gi0 = _permutationsMod12[ii + _permutations2[jj]]; int gi1 = _permutationsMod12[ii + i1 + _permutations2[jj + j1]]; int gi2 = _permutationsMod12[ii + 1 + _permutations2[jj + 1]]; /* Calculate the contribution from the three corners */ double t0 = 0.5 - x0 * x0 - y0 * y0; if (t0 < 0) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * _dot2(_grad3[gi0], x0, y0); /* (x,y) of _grad3 used for 2D gradient */ } double t1 = 0.5 - x1 * x1 - y1 * y1; if (t1 < 0) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * _dot2(_grad3[gi1], x1, y1); } double t2 = 0.5 - x2 * x2 - y2 * y2; if (t2 < 0) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * _dot2(_grad3[gi2], x2, y2); } /* Add contributions from each corner to get the final noise value. The result is scaled to return values in the interval [-0.5,0.5]. */ return 35.0 * (n0 + n1 + n2) + 0.5; } double noiseSimplexGet3DValue(double x, double y, double z) { double n0, n1, n2, n3; /* Noise contributions from the four corners */ /* Skew the input space to determine which simplex cell we're in */ double s = (x + y + z) * _F3; /* Very nice and simple skew factor for 3D */ int i = _fastfloor(x + s); int j = _fastfloor(y + s); int k = _fastfloor(z + s); double t = (i + j + k) * _G3; double X0 = i - t; /* Unskew the cell origin back to (x,y,z) space */ double Y0 = j - t; double Z0 = k - t; double x0 = x - X0; /* The x,y,z distances from the cell origin */ double y0 = y - Y0; double z0 = z - Z0; /* For the 3D case, the simplex shape is a slightly irregular tetrahedron. Determine which simplex we are in. */ int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */ int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */ if (x0 >= y0) { if (y0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 1; k2 = 0; } /* X Y Z order */ else if (x0 >= z0) { i1 = 1; j1 = 0; k1 = 0; i2 = 1; j2 = 0; k2 = 1; } /* X Z Y order */ else { i1 = 0; j1 = 0; k1 = 1; i2 = 1; j2 = 0; k2 = 1; } /* Z X Y order */ } else { /* x0 y0) rankx++; else ranky++; if (x0 > z0) rankx++; else rankz++; if (x0 > w0) rankx++; else rankw++; if (y0 > z0) ranky++; else rankz++; if (y0 > w0) ranky++; else rankw++; if (z0 > w0) rankz++; else rankw++; int i1, j1, k1, l1; /* The integer offsets for the second simplex corner */ int i2, j2, k2, l2; /* The integer offsets for the third simplex corner */ int i3, j3, k3, l3; /* The integer offsets for the fourth simplex corner */ /* simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order. Many values of c will never occur, since e.g. x>y>z>w makes x= 3 ? 1 : 0; j1 = ranky >= 3 ? 1 : 0; k1 = rankz >= 3 ? 1 : 0; l1 = rankw >= 3 ? 1 : 0; /* Rank 2 denotes the second largest coordinate. */ i2 = rankx >= 2 ? 1 : 0; j2 = ranky >= 2 ? 1 : 0; k2 = rankz >= 2 ? 1 : 0; l2 = rankw >= 2 ? 1 : 0; /* Rank 1 denotes the second smallest coordinate. */ i3 = rankx >= 1 ? 1 : 0; j3 = ranky >= 1 ? 1 : 0; k3 = rankz >= 1 ? 1 : 0; l3 = rankw >= 1 ? 1 : 0; /* The fifth corner has all coordinate offsets = 1, so no need to compute that. */ double x1 = x0 - i1 + _G4; /* Offsets for second corner in (x,y,z,w) coords */ double y1 = y0 - j1 + _G4; double z1 = z0 - k1 + _G4; double w1 = w0 - l1 + _G4; double x2 = x0 - i2 + 2.0 * _G4; /* Offsets for third corner in (x,y,z,w) coords */ double y2 = y0 - j2 + 2.0 * _G4; double z2 = z0 - k2 + 2.0 * _G4; double w2 = w0 - l2 + 2.0 * _G4; double x3 = x0 - i3 + 3.0 * _G4; /* Offsets for fourth corner in (x,y,z,w) coords */ double y3 = y0 - j3 + 3.0 * _G4; double z3 = z0 - k3 + 3.0 * _G4; double w3 = w0 - l3 + 3.0 * _G4; double x4 = x0 - 1.0 + 4.0 * _G4; /* Offsets for last corner in (x,y,z,w) coords */ double y4 = y0 - 1.0 + 4.0 * _G4; double z4 = z0 - 1.0 + 4.0 * _G4; double w4 = w0 - 1.0 + 4.0 * _G4; /* Work out the hashed gradient indices of the five simplex corners */ int ii = i & 255; int jj = j & 255; int kk = k & 255; int ll = l & 255; int gi0 = _permutations2[ii + _permutations2[jj + _permutations2[kk + _permutations2[ll]]]] % 32; int gi1 = _permutations2[ii + i1 + _permutations2[jj + j1 + _permutations2[kk + k1 + _permutations2[ll + l1]]]] % 32; int gi2 = _permutations2[ii + i2 + _permutations2[jj + j2 + _permutations2[kk + k2 + _permutations2[ll + l2]]]] % 32; int gi3 = _permutations2[ii + i3 + _permutations2[jj + j3 + _permutations2[kk + k3 + _permutations2[ll + l3]]]] % 32; int gi4 = _permutations2[ii + 1 + _permutations2[jj + 1 + _permutations2[kk + 1 + _permutations2[ll + 1]]]] % 32; /* Calculate the contribution from the five corners */ double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0 - w0 * w0; if (t0 < 0) n0 = 0.0; else { t0 *= t0; n0 = t0 * t0 * _dot4(_grad4[gi0], x0, y0, z0, w0); } double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1 - w1 * w1; if (t1 < 0) n1 = 0.0; else { t1 *= t1; n1 = t1 * t1 * _dot4(_grad4[gi1], x1, y1, z1, w1); } double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2 - w2 * w2; if (t2 < 0) n2 = 0.0; else { t2 *= t2; n2 = t2 * t2 * _dot4(_grad4[gi2], x2, y2, z2, w2); } double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3 - w3 * w3; if (t3 < 0) n3 = 0.0; else { t3 *= t3; n3 = t3 * t3 * _dot4(_grad4[gi3], x3, y3, z3, w3); } double t4 = 0.6 - x4 * x4 - y4 * y4 - z4 * z4 - w4 * w4; if (t4 < 0) n4 = 0.0; else { t4 *= t4; n4 = t4 * t4 * _dot4(_grad4[gi4], x4, y4, z4, w4); } /* Sum up and scale the result to cover the range [-0.5,0.5] */ return 13.5 * (n0 + n1 + n2 + n3 + n4) + 0.5; } double NoiseFunctionSimplex::getBase2d(double x, double y) const { return noiseSimplexGet2DValue(x, y) - 0.5; } double NoiseFunctionSimplex::getBase3d(double x, double y, double z) const { return noiseSimplexGet3DValue(x, y, z) - 0.5; } static constexpr double TEXTURE_SCALING = 15.0; static Texture2D *_valueTexture = NULL; const Texture2D *NoiseFunctionSimplex::getValueTexture() { if (!_valueTexture) { const int width = 2048; const int height = 2048; _valueTexture = new Texture2D(width, height); for (int x = 0; x < width; x++) { for (int z = 0; z < height; z++) { // TODO Make texture tileable double dx = to_double(x) / to_double(width); double dz = to_double(z) / to_double(height); double val = noiseSimplexGet2DValue(TEXTURE_SCALING * dx, TEXTURE_SCALING * dz); _valueTexture->setPixel(x, z, Color(val, val, val)); } } } return _valueTexture; } static Texture2D *_normalTexture = NULL; const Texture2D *NoiseFunctionSimplex::getNormalTexture() { if (!_normalTexture) { const int width = 2048; const int height = 2048; _normalTexture = new Texture2D(width, height); double scale = TEXTURE_SCALING; double offset = scale * 0.1; for (int x = 0; x < width; x++) { for (int z = 0; z < height; z++) { // TODO Make texture tileable double dx = to_double(x) / to_double(width); double dz = to_double(z) / to_double(height); double vcenter = noiseSimplexGet2DValue(scale * dx, scale * dz); double vsouth = noiseSimplexGet2DValue(scale * dx, scale * dz + offset); double veast = noiseSimplexGet2DValue(scale * dx + offset, scale * dz); Vector3 normal = Geometry::getNormalFromTriangle( Vector3(0.0, vcenter, 0.0), Vector3(0.0, vsouth, offset), Vector3(offset, veast, 0.0)); _normalTexture->setPixel(x, z, Color(normal.x * 0.5 + 0.5, normal.y * 0.5 + 0.5, normal.z * 0.5 + 0.5)); } } } return _normalTexture; }