paysages3d/src/experiments/bruneton/inscatterS.glsl

159 lines
5.9 KiB
GLSL

/**
* Precomputed Atmospheric Scattering
* Copyright (c) 2008 INRIA
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* 3. Neither the name of the copyright holders nor the names of its
* contributors may be used to endorse or promote products derived from
* this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
* THE POSSIBILITY OF SUCH DAMAGE.
*/
/**
* Author: Eric Bruneton
*/
// computes deltaJ (line 7 in algorithm 4.1)
uniform float r;
uniform vec4 dhdH;
uniform int layer;
uniform sampler2D deltaESampler;
uniform sampler3D deltaSRSampler;
uniform sampler3D deltaSMSampler;
uniform float first;
#ifdef _VERTEX_
void main() {
gl_Position = gl_Vertex;
}
#endif
#ifdef _GEOMETRY_
#extension GL_EXT_geometry_shader4 : enable
void main() {
gl_Position = gl_PositionIn[0];
gl_Layer = layer;
EmitVertex();
gl_Position = gl_PositionIn[1];
gl_Layer = layer;
EmitVertex();
gl_Position = gl_PositionIn[2];
gl_Layer = layer;
EmitVertex();
EndPrimitive();
}
#endif
#ifdef _FRAGMENT_
const float dphi = M_PI / float(INSCATTER_SPHERICAL_INTEGRAL_SAMPLES);
const float dtheta = M_PI / float(INSCATTER_SPHERICAL_INTEGRAL_SAMPLES);
void inscatter(float r, float mu, float muS, float nu, out vec3 raymie) {
r = clamp(r, Rg, Rt);
mu = clamp(mu, -1.0, 1.0);
muS = clamp(muS, -1.0, 1.0);
float var = sqrt(1.0 - mu * mu) * sqrt(1.0 - muS * muS);
nu = clamp(nu, muS * mu - var, muS * mu + var);
float cthetamin = -sqrt(1.0 - (Rg / r) * (Rg / r));
vec3 v = vec3(sqrt(1.0 - mu * mu), 0.0, mu);
float sx = v.x == 0.0 ? 0.0 : (nu - muS * mu) / v.x;
vec3 s = vec3(sx, sqrt(max(0.0, 1.0 - sx * sx - muS * muS)), muS);
raymie = vec3(0.0);
// integral over 4.PI around x with two nested loops over w directions (theta,phi) -- Eq (7)
for (int itheta = 0; itheta < INSCATTER_SPHERICAL_INTEGRAL_SAMPLES; ++itheta) {
float theta = (float(itheta) + 0.5) * dtheta;
float ctheta = cos(theta);
float greflectance = 0.0;
float dground = 0.0;
vec3 gtransp = vec3(0.0);
if (ctheta < cthetamin) { // if ground visible in direction w
// compute transparency gtransp between x and ground
greflectance = AVERAGE_GROUND_REFLECTANCE / M_PI;
dground = -r * ctheta - sqrt(r * r * (ctheta * ctheta - 1.0) + Rg * Rg);
gtransp = transmittance(Rg, -(r * ctheta + dground) / Rg, dground);
}
for (int iphi = 0; iphi < 2 * INSCATTER_SPHERICAL_INTEGRAL_SAMPLES; ++iphi) {
float phi = (float(iphi) + 0.5) * dphi;
float dw = dtheta * dphi * sin(theta);
vec3 w = vec3(cos(phi) * sin(theta), sin(phi) * sin(theta), ctheta);
float nu1 = dot(s, w);
float nu2 = dot(v, w);
float pr2 = phaseFunctionR(nu2);
float pm2 = phaseFunctionM(nu2);
// compute irradiance received at ground in direction w (if ground visible) =deltaE
vec3 gnormal = (vec3(0.0, 0.0, r) + dground * w) / Rg;
vec3 girradiance = irradiance(deltaESampler, Rg, dot(gnormal, s));
vec3 raymie1; // light arriving at x from direction w
// first term = light reflected from the ground and attenuated before reaching x, =T.alpha/PI.deltaE
raymie1 = greflectance * girradiance * gtransp;
// second term = inscattered light, =deltaS
if (first == 1.0) {
// first iteration is special because Rayleigh and Mie were stored separately,
// without the phase functions factors; they must be reintroduced here
float pr1 = phaseFunctionR(nu1);
float pm1 = phaseFunctionM(nu1);
vec3 ray1 = texture4D(deltaSRSampler, r, w.z, muS, nu1).rgb;
vec3 mie1 = texture4D(deltaSMSampler, r, w.z, muS, nu1).rgb;
raymie1 += ray1 * pr1 + mie1 * pm1;
} else {
raymie1 += texture4D(deltaSRSampler, r, w.z, muS, nu1).rgb;
}
// light coming from direction w and scattered in direction v
// = light arriving at x from direction w (raymie1) * SUM(scattering coefficient * phaseFunction)
// see Eq (7)
raymie += raymie1 * (betaR * exp(-(r - Rg) / HR) * pr2 + betaMSca * exp(-(r - Rg) / HM) * pm2) * dw;
}
}
// output raymie = J[T.alpha/PI.deltaE + deltaS] (line 7 in algorithm 4.1)
}
void main() {
vec3 raymie;
float mu, muS, nu;
getMuMuSNu(r, dhdH, mu, muS, nu);
inscatter(r, mu, muS, nu, raymie);
gl_FragColor.rgb = raymie;
}
#endif