Michaël Lemaire
324a01dca1
git-svn-id: https://subversion.assembla.com/svn/thunderk/paysages@514 b1fd45b6-86a6-48da-8261-f70d1f35bdcc
415 lines
13 KiB
C
415 lines
13 KiB
C
#include "private.h"
|
|
|
|
/*
|
|
* Clouds tools.
|
|
*/
|
|
|
|
#include "../renderer.h"
|
|
#include "../tools.h"
|
|
|
|
static inline Vector3 _getNormal(CloudsLayerDefinition* layer, Vector3 position, double detail)
|
|
{
|
|
Vector3 result = {0.0, 0.0, 0.0};
|
|
/*Vector3 dposition;
|
|
double val, dval;
|
|
|
|
val = _getDistanceToBorder(layer, position);
|
|
|
|
dposition.x = position.x + detail;
|
|
dposition.y = position.y;
|
|
dposition.z = position.z;
|
|
dval = val - _getDistanceToBorder(layer, dposition);
|
|
result.x += dval;
|
|
|
|
dposition.x = position.x - detail;
|
|
dval = val - _getDistanceToBorder(layer, dposition);
|
|
result.x -= dval;
|
|
|
|
dposition.x = position.x;
|
|
dposition.y = position.y + detail;
|
|
dval = val - _getDistanceToBorder(layer, dposition);
|
|
result.y += dval;
|
|
|
|
dposition.y = position.y - detail;
|
|
dval = val - _getDistanceToBorder(layer, dposition);
|
|
result.y -= dval;
|
|
|
|
dposition.y = position.y;
|
|
dposition.z = position.z + detail;
|
|
dval = val - _getDistanceToBorder(layer, dposition);
|
|
result.z += dval;
|
|
|
|
dposition.z = position.z - detail;
|
|
dval = val - _getDistanceToBorder(layer, dposition);
|
|
result.z -= dval;*/
|
|
|
|
return v3Normalize(result);
|
|
}
|
|
|
|
/**
|
|
* Optimize the search limits in a layer.
|
|
*
|
|
* @param layer The cloud layer
|
|
* @param start Start of the search to optimize
|
|
* @param end End of the search to optimize
|
|
* @return 0 if the search is useless
|
|
*/
|
|
static int _optimizeSearchLimits(CloudsLayerDefinition* layer, Vector3* start, Vector3* end)
|
|
{
|
|
Vector3 diff;
|
|
|
|
if (start->y > layer->lower_altitude + layer->thickness)
|
|
{
|
|
if (end->y >= layer->lower_altitude + layer->thickness)
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
diff = v3Sub(*end, *start);
|
|
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
|
|
if (end->y < layer->lower_altitude)
|
|
{
|
|
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude - end->y) / diff.y));
|
|
}
|
|
}
|
|
}
|
|
else if (start->y < layer->lower_altitude)
|
|
{
|
|
if (end->y <= layer->lower_altitude)
|
|
{
|
|
return 0;
|
|
}
|
|
else
|
|
{
|
|
diff = v3Sub(*end, *start);
|
|
*start = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
|
|
if (end->y >= layer->lower_altitude + layer->thickness)
|
|
{
|
|
*end = v3Add(*end, v3Scale(diff, (layer->lower_altitude + layer->thickness - end->y) / diff.y));
|
|
}
|
|
}
|
|
}
|
|
else /* start is inside layer */
|
|
{
|
|
diff = v3Sub(*end, *start);
|
|
if (end->y > layer->lower_altitude + layer->thickness)
|
|
{
|
|
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude + layer->thickness - start->y) / diff.y));
|
|
}
|
|
else if (end->y < layer->lower_altitude)
|
|
{
|
|
*end = v3Add(*start, v3Scale(diff, (layer->lower_altitude - start->y) / diff.y));
|
|
}
|
|
}
|
|
|
|
/* TODO Limit the search length */
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* Go through the cloud layer to find segments (parts of the lookup that are likely to contain cloud).
|
|
*
|
|
* @param definition The cloud layer
|
|
* @param renderer The renderer environment
|
|
* @param start Start position of the lookup (already optimized)
|
|
* @param direction Normalized direction of the lookup
|
|
* @param max_segments Maximum number of segments to collect
|
|
* @param max_inside_length Maximum length to spend inside the cloud
|
|
* @param max_total_length Maximum lookup length
|
|
* @param inside_length Resulting length inside cloud (sum of all segments length)
|
|
* @param total_length Resulting lookup length
|
|
* @param out_segments Allocated space to fill found segments
|
|
* @return Number of segments found
|
|
*/
|
|
static int _getPrimarySegments(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 start, Vector3 direction, int max_segments, double max_inside_length, double max_total_length, double* inside_length, double* total_length, CloudSegment* out_segments)
|
|
{
|
|
int inside, segment_count;
|
|
double current_total_length, current_inside_length;
|
|
double step_length, segment_length;
|
|
Vector3 walker, step, segment_start;
|
|
CloudsInfo info;
|
|
double render_precision;
|
|
|
|
if (max_segments <= 0)
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
render_precision = 1.005 - 0.01 * (double)(renderer->render_quality * renderer->render_quality);
|
|
if (render_precision > max_total_length / 10.0)
|
|
{
|
|
render_precision = max_total_length / 10.0;
|
|
}
|
|
else if (render_precision < max_total_length / 10000.0)
|
|
{
|
|
render_precision = max_total_length / 10000.0;
|
|
}
|
|
|
|
segment_count = 0;
|
|
current_total_length = 0.0;
|
|
current_inside_length = 0.0;
|
|
segment_length = 0.0;
|
|
walker = start;
|
|
info = renderer->clouds->getLayerInfo(renderer, definition, start);
|
|
inside = info.inside;
|
|
step = v3Scale(direction, render_precision);
|
|
|
|
do
|
|
{
|
|
walker = v3Add(walker, step);
|
|
step_length = v3Norm(step);
|
|
current_total_length += step_length;
|
|
|
|
if (current_total_length >= max_total_length || current_inside_length > max_inside_length)
|
|
{
|
|
info.distance_to_edge = 0.0;
|
|
info.inside = 0;
|
|
}
|
|
else
|
|
{
|
|
info = renderer->clouds->getLayerInfo(renderer, definition, walker);
|
|
}
|
|
|
|
if (info.inside)
|
|
{
|
|
if (inside)
|
|
{
|
|
/* inside the cloud */
|
|
segment_length += step_length;
|
|
current_inside_length += step_length;
|
|
}
|
|
else
|
|
{
|
|
/* entering the cloud */
|
|
segment_length = step_length;
|
|
segment_start = walker;
|
|
current_inside_length += segment_length;
|
|
/* TODO Refine entry position */
|
|
|
|
inside = 1;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (inside)
|
|
{
|
|
/* exiting the cloud */
|
|
segment_length += step_length;
|
|
current_inside_length += step_length;
|
|
|
|
out_segments->start = segment_start;
|
|
out_segments->end = walker;
|
|
out_segments->length = segment_length;
|
|
out_segments++;
|
|
if (++segment_count >= max_segments)
|
|
{
|
|
break;
|
|
}
|
|
/* TODO Refine exit position */
|
|
|
|
inside = 0;
|
|
}
|
|
}
|
|
step = v3Scale(direction, (info.distance_to_edge < render_precision) ? render_precision : info.distance_to_edge);
|
|
} while (inside || (walker.y <= definition->lower_altitude + definition->thickness + 0.001 && walker.y >= definition->lower_altitude - 0.001 && current_total_length < max_total_length && current_inside_length < max_inside_length));
|
|
|
|
*total_length = current_total_length;
|
|
*inside_length = current_inside_length;
|
|
return segment_count;
|
|
}
|
|
|
|
static Color _applyLayerLighting(CloudsLayerDefinition* definition, Renderer* renderer, Vector3 location, double detail)
|
|
{
|
|
Vector3 normal;
|
|
Color col1, col2;
|
|
LightStatus* lighting;
|
|
|
|
normal = _getNormal(definition, location, 3.0);
|
|
if (renderer->render_quality > 3)
|
|
{
|
|
normal = v3Add(normal, _getNormal(definition, location, 2.0));
|
|
normal = v3Add(normal, _getNormal(definition, location, 1.0));
|
|
}
|
|
if (renderer->render_quality > 5)
|
|
{
|
|
normal = v3Add(normal, _getNormal(definition, location, 0.5));
|
|
}
|
|
if (renderer->render_quality > 8)
|
|
{
|
|
normal = v3Add(normal, _getNormal(definition, location, 0.75));
|
|
normal = v3Add(normal, _getNormal(definition, location, 1.25));
|
|
normal = v3Add(normal, _getNormal(definition, location, 2.5));
|
|
}
|
|
normal = v3Scale(v3Normalize(normal), definition->hardness);
|
|
|
|
return renderer->applyLightingToSurface(renderer, location, normal, &definition->material);
|
|
|
|
lighting = lightingCreateStatus(renderer->lighting, location, renderer->getCameraLocation(renderer, location));
|
|
renderer->atmosphere->getLightingStatus(renderer, lighting, normal, 0);
|
|
col1 = lightingApplyStatus(lighting, normal, &definition->material);
|
|
col2 = lightingApplyStatus(lighting, v3Scale(normal, -1.0), &definition->material);
|
|
lightingDeleteStatus(lighting);
|
|
|
|
col1.r = (col1.r + col2.r) / 2.0;
|
|
col1.g = (col1.g + col2.g) / 2.0;
|
|
col1.b = (col1.b + col2.b) / 2.0;
|
|
col1.a = (col1.a + col2.a) / 2.0;
|
|
|
|
return col1;
|
|
}
|
|
|
|
Color cloudsApplyLayer(CloudsLayerDefinition* definition, Color base, Renderer* renderer, Vector3 start, Vector3 end)
|
|
{
|
|
int segment_count;
|
|
double max_length, total_length, inside_length;
|
|
Vector3 direction;
|
|
Color col;
|
|
CloudSegment segments[MAX_SEGMENT_COUNT];
|
|
|
|
if (!_optimizeSearchLimits(definition, &start, &end))
|
|
{
|
|
return base;
|
|
}
|
|
|
|
direction = v3Sub(end, start);
|
|
max_length = v3Norm(direction);
|
|
direction = v3Normalize(direction);
|
|
|
|
segment_count = _getPrimarySegments(definition, renderer, start, direction, MAX_SEGMENT_COUNT, definition->transparencydepth * (double)renderer->render_quality, max_length, &inside_length, &total_length, segments);
|
|
/* TODO Crawl in segments for render */
|
|
|
|
col = definition->material.base;
|
|
if (definition->transparencydepth == 0 || inside_length >= definition->transparencydepth)
|
|
{
|
|
col.a = 1.0;
|
|
}
|
|
else
|
|
{
|
|
col.a = inside_length / definition->transparencydepth;
|
|
}
|
|
|
|
colorMask(&base, &col);
|
|
|
|
return base;
|
|
}
|
|
|
|
Color cloudsLayerFilterLight(CloudsLayerDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light)
|
|
{
|
|
double inside_depth, total_depth, factor;
|
|
CloudSegment segments[MAX_SEGMENT_COUNT];
|
|
|
|
if (!_optimizeSearchLimits(definition, &location, &light_location))
|
|
{
|
|
return light;
|
|
}
|
|
|
|
_getPrimarySegments(definition, renderer, location, direction_to_light, MAX_SEGMENT_COUNT, definition->lighttraversal, v3Norm(v3Sub(light_location, location)), &inside_depth, &total_depth, segments);
|
|
|
|
if (definition->lighttraversal < 0.0001)
|
|
{
|
|
factor = 0.0;
|
|
}
|
|
else
|
|
{
|
|
factor = inside_depth / definition->lighttraversal;
|
|
if (factor > 1.0)
|
|
{
|
|
factor = 1.0;
|
|
}
|
|
}
|
|
|
|
factor = 1.0 - (1.0 - definition->minimumlight) * factor;
|
|
|
|
light.r = light.r * factor;
|
|
light.g = light.g * factor;
|
|
light.b = light.b * factor;
|
|
|
|
return light;
|
|
}
|
|
|
|
/*
|
|
* Get the coverage factor at the given location [0.0;1.0].
|
|
* 0.0 means no cloud is present.
|
|
* 1.0 means full layer.
|
|
*/
|
|
static inline double _getLayerCoverage(CloudsLayerDefinition* layer, double x, double z)
|
|
{
|
|
if (layer->base_coverage == 0.0)
|
|
{
|
|
return 0.0;
|
|
}
|
|
else
|
|
{
|
|
double coverage = noiseGet2DTotal(layer->_coverage_noise, x / layer->shape_scaling, z / layer->shape_scaling);
|
|
coverage -= (1.0 - layer->base_coverage);
|
|
return (coverage <= 0.0) ? 0.0 : coverage;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Get the local density factor at the given location [0.0;1.0].
|
|
* 0.0 means no cloud is present.
|
|
* 1.0 means full density (deep inside cloud).
|
|
*/
|
|
static inline double _getLayerDensity(CloudsLayerDefinition* layer, Vector3 location, double coverage)
|
|
{
|
|
if (coverage == 0.0)
|
|
{
|
|
return 0.0;
|
|
}
|
|
else if (coverage == 1.0)
|
|
{
|
|
return 1.0;
|
|
}
|
|
else
|
|
{
|
|
double density = noiseGet3DTotal(layer->_shape_noise, location.x / layer->shape_scaling, location.y / layer->shape_scaling, location.z / layer->shape_scaling);
|
|
density -= (0.5 - coverage);
|
|
return (density <= 0.0) ? 0.0 : density;
|
|
}
|
|
}
|
|
|
|
CloudsInfo cloudsGetLayerInfo(Renderer* renderer, CloudsLayerDefinition* layer, Vector3 location)
|
|
{
|
|
CloudsInfo result;
|
|
|
|
UNUSED(renderer);
|
|
|
|
result.density = 0.0;
|
|
result.distance_to_edge = 0.1;
|
|
|
|
/* Get coverage info */
|
|
double coverage = _getLayerCoverage(layer, location.x, location.z);
|
|
if (coverage <= 0.0)
|
|
{
|
|
/* TODO Distance to edge */
|
|
}
|
|
else
|
|
{
|
|
/* Apply altitude to coverage */
|
|
coverage *= curveGetValue(layer->_coverage_by_altitude, (location.y - layer->lower_altitude) / layer->thickness);
|
|
if (coverage <= 0.0)
|
|
{
|
|
/* TODO Distance to edge */
|
|
}
|
|
else
|
|
{
|
|
/* Get local density */
|
|
result.density = _getLayerDensity(layer, location, coverage);
|
|
if (result.density <= 0)
|
|
{
|
|
/* TODO Distance to edge */
|
|
}
|
|
else
|
|
{
|
|
/* TODO Distance to edge */
|
|
}
|
|
}
|
|
}
|
|
|
|
result.inside = (result.density > 0.0);
|
|
|
|
return result;
|
|
}
|
|
|