Michaël Lemaire
5deb2fdced
git-svn-id: https://subversion.assembla.com/svn/thunderk/paysages@349 b1fd45b6-86a6-48da-8261-f70d1f35bdcc
317 lines
10 KiB
C
317 lines
10 KiB
C
#include "water.h"
|
|
|
|
#include "shared/types.h"
|
|
#include "color.h"
|
|
#include "euclid.h"
|
|
#include "render.h"
|
|
#include "terrain.h"
|
|
#include "lighting.h"
|
|
#include "tools.h"
|
|
|
|
#include <math.h>
|
|
|
|
void waterInit()
|
|
{
|
|
}
|
|
|
|
void waterQuit()
|
|
{
|
|
}
|
|
|
|
void waterSave(PackStream* stream, WaterDefinition* definition)
|
|
{
|
|
packWriteFloat(stream, &definition->height);
|
|
materialSave(stream, &definition->material);
|
|
colorSave(stream, &definition->depth_color);
|
|
packWriteFloat(stream, &definition->transparency_depth);
|
|
packWriteFloat(stream, &definition->transparency);
|
|
packWriteFloat(stream, &definition->reflection);
|
|
packWriteFloat(stream, &definition->lighting_depth);
|
|
noiseSaveGenerator(stream, definition->waves_noise);
|
|
packWriteFloat(stream, &definition->waves_noise_height);
|
|
packWriteFloat(stream, &definition->waves_noise_scale);
|
|
}
|
|
|
|
void waterLoad(PackStream* stream, WaterDefinition* definition)
|
|
{
|
|
packReadFloat(stream, &definition->height);
|
|
materialLoad(stream, &definition->material);
|
|
colorLoad(stream, &definition->depth_color);
|
|
packReadFloat(stream, &definition->transparency_depth);
|
|
packReadFloat(stream, &definition->transparency);
|
|
packReadFloat(stream, &definition->reflection);
|
|
packReadFloat(stream, &definition->lighting_depth);
|
|
noiseLoadGenerator(stream, definition->waves_noise);
|
|
packReadFloat(stream, &definition->waves_noise_height);
|
|
packReadFloat(stream, &definition->waves_noise_scale);
|
|
|
|
waterValidateDefinition(definition);
|
|
}
|
|
|
|
WaterDefinition waterCreateDefinition()
|
|
{
|
|
WaterDefinition result;
|
|
|
|
result.material.base = COLOR_BLACK;
|
|
result.material.reflection = 0.0;
|
|
result.material.shininess = 0.0;
|
|
result.depth_color = COLOR_BLACK;
|
|
result.height = -1000.0;
|
|
result.reflection = 0.0;
|
|
result.transparency = 0.0;
|
|
result.transparency_depth = 0.0;
|
|
result.lighting_depth = 0.0;
|
|
result.waves_noise = noiseCreateGenerator();
|
|
result.waves_noise_height = 0.02;
|
|
result.waves_noise_scale = 0.2;
|
|
|
|
return result;
|
|
}
|
|
|
|
void waterDeleteDefinition(WaterDefinition* definition)
|
|
{
|
|
noiseDeleteGenerator(definition->waves_noise);
|
|
}
|
|
|
|
void waterCopyDefinition(WaterDefinition* source, WaterDefinition* destination)
|
|
{
|
|
NoiseGenerator* noise;
|
|
|
|
noise = destination->waves_noise;
|
|
*destination = *source;
|
|
destination->waves_noise = noise;
|
|
noiseCopy(source->waves_noise, destination->waves_noise);
|
|
}
|
|
|
|
void waterValidateDefinition(WaterDefinition* definition)
|
|
{
|
|
}
|
|
|
|
static inline float _getHeight(WaterDefinition* definition, float x, float z, float detail)
|
|
{
|
|
return definition->height + noiseGet2DDetail(definition->waves_noise, x / definition->waves_noise_scale, z / definition->waves_noise_scale, detail) * definition->waves_noise_height;
|
|
}
|
|
|
|
static inline Vector3 _getNormal(WaterDefinition* definition, Vector3 base, float detail)
|
|
{
|
|
Vector3 back, right;
|
|
float x, z;
|
|
|
|
x = base.x;
|
|
z = base.z;
|
|
|
|
back.x = x;
|
|
back.y = _getHeight(definition, x, z + detail, detail);
|
|
back.z = z + detail;
|
|
back = v3Sub(back, base);
|
|
|
|
right.x = x + detail;
|
|
right.y = _getHeight(definition, x + detail, z, detail);
|
|
right.z = z;
|
|
right = v3Sub(right, base);
|
|
|
|
return v3Normalize(v3Cross(back, right));
|
|
}
|
|
|
|
static inline Vector3 _reflectRay(Vector3 incoming, Vector3 normal)
|
|
{
|
|
float c;
|
|
|
|
c = v3Dot(normal, v3Scale(incoming, -1.0));
|
|
return v3Add(incoming, v3Scale(normal, 2.0 * c));
|
|
}
|
|
|
|
static inline Vector3 _refractRay(Vector3 incoming, Vector3 normal)
|
|
{
|
|
float c1, c2, f;
|
|
|
|
f = 1.0 / 1.33;
|
|
c1 = v3Dot(normal, v3Scale(incoming, -1.0));
|
|
c2 = sqrt(1.0 - pow(f, 2.0) * (1.0 - pow(c1, 2.0)));
|
|
if (c1 >= 0.0)
|
|
{
|
|
return v3Add(v3Scale(incoming, f), v3Scale(normal, f * c1 - c2));
|
|
}
|
|
else
|
|
{
|
|
return v3Add(v3Scale(incoming, f), v3Scale(normal, c2 - f * c1));
|
|
}
|
|
}
|
|
|
|
HeightInfo waterGetHeightInfo(WaterDefinition* definition)
|
|
{
|
|
HeightInfo info;
|
|
|
|
info.base_height = definition->height;
|
|
info.min_height = definition->height - noiseGetMaxValue(definition->waves_noise) * definition->waves_noise_height;
|
|
info.max_height = definition->height + noiseGetMaxValue(definition->waves_noise) * definition->waves_noise_height;
|
|
|
|
return info;
|
|
}
|
|
|
|
Color waterLightFilter(WaterDefinition* definition, Renderer* renderer, Color light, Vector3 location, Vector3 light_location, Vector3 direction_to_light)
|
|
{
|
|
float factor;
|
|
|
|
if (location.y < definition->height)
|
|
{
|
|
if (direction_to_light.y > 0.00001)
|
|
{
|
|
factor = (definition->height - location.y) / (direction_to_light.y * definition->lighting_depth);
|
|
if (factor > 1.0)
|
|
{
|
|
factor = 1.0;
|
|
}
|
|
factor = 1.0 - 0.8 * factor;
|
|
|
|
light.r *= factor;
|
|
light.g *= factor;
|
|
light.b *= factor;
|
|
|
|
return light;
|
|
}
|
|
else
|
|
{
|
|
return COLOR_BLACK;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
return light;
|
|
}
|
|
}
|
|
|
|
WaterResult waterGetColorDetail(WaterDefinition* definition, Renderer* renderer, Vector3 location, Vector3 look)
|
|
{
|
|
WaterResult result;
|
|
RayCastingResult refracted;
|
|
Vector3 normal;
|
|
Color color;
|
|
LightStatus light;
|
|
SurfaceMaterial material;
|
|
float detail, depth;
|
|
|
|
detail = renderer->getPrecision(renderer, location);
|
|
|
|
location.y = _getHeight(definition, location.x, location.z, detail);
|
|
result.location = location;
|
|
|
|
normal = _getNormal(definition, location, detail);
|
|
look = v3Normalize(look);
|
|
result.reflected = renderer->rayWalking(renderer, location, _reflectRay(look, normal), 1, 0, 1, 1).hit_color;
|
|
refracted = renderer->rayWalking(renderer, location, _refractRay(look, normal), 1, 0, 1, 1);
|
|
depth = v3Norm(v3Sub(location, refracted.hit_location));
|
|
if (depth > definition->transparency_depth)
|
|
{
|
|
result.refracted = definition->depth_color;
|
|
}
|
|
else
|
|
{
|
|
depth /= definition->transparency_depth;
|
|
result.refracted.r = refracted.hit_color.r * (1.0 - depth) + definition->depth_color.r * depth;
|
|
result.refracted.g = refracted.hit_color.g * (1.0 - depth) + definition->depth_color.g * depth;
|
|
result.refracted.b = refracted.hit_color.b * (1.0 - depth) + definition->depth_color.b * depth;
|
|
result.refracted.a = 1.0;
|
|
}
|
|
|
|
color.r = definition->material.base.r * (1.0 - definition->transparency) + result.reflected.r * definition->reflection + result.refracted.r * definition->transparency;
|
|
color.g = definition->material.base.g * (1.0 - definition->transparency) + result.reflected.g * definition->reflection + result.refracted.g * definition->transparency;
|
|
color.b = definition->material.base.b * (1.0 - definition->transparency) + result.reflected.b * definition->reflection + result.refracted.b * definition->transparency;
|
|
color.a = 1.0;
|
|
|
|
material = definition->material;
|
|
material.base = color;
|
|
renderer->getLightStatus(renderer, &light, location);
|
|
color = renderer->applyLightStatus(renderer, &light, location, normal, material);
|
|
color = renderer->applyAtmosphere(renderer, location, color);
|
|
color = renderer->applyClouds(renderer, color, renderer->camera_location, location);
|
|
|
|
result.base = definition->material.base;
|
|
result.final = color;
|
|
|
|
return result;
|
|
}
|
|
|
|
Color waterGetColor(WaterDefinition* definition, Renderer* renderer, Vector3 location, Vector3 look)
|
|
{
|
|
return waterGetColorDetail(definition, renderer, location, look).final;
|
|
}
|
|
|
|
static int _postProcessFragment(RenderFragment* fragment, Renderer* renderer, void* data)
|
|
{
|
|
fragment->vertex.color = waterGetColor((WaterDefinition*)data, renderer, fragment->vertex.location, v3Sub(fragment->vertex.location, renderer->camera_location));
|
|
return 1;
|
|
}
|
|
|
|
static Vertex _getFirstPassVertex(WaterDefinition* definition, float x, float z, float precision)
|
|
{
|
|
Vertex result;
|
|
float value;
|
|
|
|
result.location.x = x;
|
|
result.location.y = _getHeight(definition, x, z, 0.0);
|
|
result.location.z = z;
|
|
value = sin(x) * sin(x) * cos(z) * cos(z);
|
|
result.color.r = 0.0;
|
|
result.color.g = value;
|
|
result.color.b = value;
|
|
result.color.a = 1.0;
|
|
result.callback = _postProcessFragment;
|
|
result.callback_data = definition;
|
|
|
|
return result;
|
|
}
|
|
|
|
static void _renderQuad(WaterDefinition* definition, Renderer* renderer, float x, float z, float size)
|
|
{
|
|
Vertex v1, v2, v3, v4;
|
|
|
|
v1 = _getFirstPassVertex(definition, x, z, size);
|
|
v2 = _getFirstPassVertex(definition, x, z + size, size);
|
|
v3 = _getFirstPassVertex(definition, x + size, z + size, size);
|
|
v4 = _getFirstPassVertex(definition, x + size, z, size);
|
|
renderer->pushQuad(renderer, &v1, &v2, &v3, &v4);
|
|
}
|
|
|
|
void waterRender(WaterDefinition* definition, Renderer* renderer)
|
|
{
|
|
int chunk_factor, chunk_count, i;
|
|
float cx = renderer->camera_location.x;
|
|
float cz = renderer->camera_location.z;
|
|
float radius_int, radius_ext, base_chunk_size, chunk_size;
|
|
|
|
base_chunk_size = 2.0 / (float)renderer->render_quality;
|
|
|
|
chunk_factor = 1;
|
|
chunk_count = 2;
|
|
radius_int = 0.0;
|
|
radius_ext = base_chunk_size;
|
|
chunk_size = base_chunk_size;
|
|
|
|
while (radius_ext < 1000.0)
|
|
{
|
|
if (!renderer->addRenderProgress(renderer, 0.0))
|
|
{
|
|
return;
|
|
}
|
|
|
|
for (i = 0; i < chunk_count - 1; i++)
|
|
{
|
|
_renderQuad(definition, renderer, cx - radius_ext + chunk_size * i, cz - radius_ext, chunk_size);
|
|
_renderQuad(definition, renderer, cx + radius_int, cz - radius_ext + chunk_size * i, chunk_size);
|
|
_renderQuad(definition, renderer, cx + radius_int - chunk_size * i, cz + radius_int, chunk_size);
|
|
_renderQuad(definition, renderer, cx - radius_ext, cz + radius_int - chunk_size * i, chunk_size);
|
|
}
|
|
|
|
if (radius_int > 20.0 && chunk_count % 64 == 0 && (float)chunk_factor < radius_int / 20.0)
|
|
{
|
|
chunk_count /= 2;
|
|
chunk_factor *= 2;
|
|
}
|
|
chunk_count += 2;
|
|
chunk_size = base_chunk_size * chunk_factor;
|
|
radius_int = radius_ext;
|
|
radius_ext += chunk_size;
|
|
}
|
|
}
|
|
|