paysages3d/src/render/software/AtmosphereRenderer.cpp

224 lines
6.9 KiB
C++

#include "AtmosphereRenderer.h"
#include <cmath>
#include "SoftwareRenderer.h"
#include "AtmosphereDefinition.h"
#include "AtmosphereModelBruneton.h"
#include "AtmosphereResult.h"
#include "GodRaysSampler.h"
#include "LightComponent.h"
#include "LightStatus.h"
#include "Scenery.h"
#include "NightSky.h"
#include "FloatNode.h"
/* Factor to convert software units to kilometers */
#define WORLD_SCALING 0.05
#define SUN_DISTANCE 149597870.0
#define SUN_DISTANCE_SCALED (SUN_DISTANCE / WORLD_SCALING)
#define SUN_RADIUS 6.955e5
#define SUN_RADIUS_SCALED (SUN_RADIUS / WORLD_SCALING)
static inline double _getDayFactor(double daytime)
{
daytime = 1.0 - fabs(0.5 - daytime) / 0.5;
return daytime < 0.45 ? 0.0 : sqrt((daytime - 0.45) / 0.55);
}
static inline void _applyWeatherEffects(AtmosphereDefinition* definition, AtmosphereResult* result)
{
if (definition->model == AtmosphereDefinition::ATMOSPHERE_MODEL_DISABLED)
{
result->updateFinal();
return;
}
double humidity = definition->propHumidity()->getValue();
double distance = result->distance;
double max_distance = 100.0 - 90.0 * humidity;
double distancefactor, dayfactor;
if (distance > max_distance)
{
distance = max_distance;
}
distancefactor = (distance > max_distance ? max_distance : distance) / max_distance;
/* TODO Get day lighting from model */
dayfactor = _getDayFactor(definition->propDayTime()->getValue());
/* Fog masking */
if (humidity > 0.3)
{
result->mask.r = result->mask.g = result->mask.b = (10.0 - 8.0 * humidity) * dayfactor;
result->mask.a = distancefactor * (humidity - 0.3) / 0.7;
}
/* Scattering tweaking */
if (humidity < 0.15)
{
/* Limit scattering on ultra clear day */
double force = (0.15 - humidity) / 0.15;
result->inscattering.limitPower(100.0 - 90.0 * pow(force, 0.1));
}
else
{
/* Scattering boost */
double force = 1.2 * (humidity < 0.5 ? sqrt((humidity - 0.15) / 0.35) : 1.0 - (humidity - 0.5) / 0.5);
result->inscattering.r *= 1.0 + force * distancefactor * (humidity - 0.15) / 0.85;
result->inscattering.g *= 1.0 + force * distancefactor * (humidity - 0.15) / 0.85;
result->inscattering.b *= 1.0 + force * distancefactor * (humidity - 0.15) / 0.85;
}
/* Attenuation */
result->attenuation.r *= 1.0 - 0.4 * distancefactor * humidity;
result->attenuation.g *= 1.0 - 0.4 * distancefactor * humidity;
result->attenuation.b *= 1.0 - 0.4 * distancefactor * humidity;
result->updateFinal();
}
BaseAtmosphereRenderer::BaseAtmosphereRenderer(SoftwareRenderer* renderer):
parent(renderer)
{
}
AtmosphereResult BaseAtmosphereRenderer::applyAerialPerspective(Vector3, Color base)
{
AtmosphereResult result;
result.base = result.final = base;
result.inscattering = result.attenuation = COLOR_BLACK;
return result;
}
AtmosphereResult BaseAtmosphereRenderer::getSkyColor(Vector3)
{
AtmosphereResult result;
result.base = result.final = COLOR_WHITE;
result.inscattering = result.attenuation = COLOR_BLACK;
return result;
}
Vector3 BaseAtmosphereRenderer::getSunDirection(bool) const
{
AtmosphereDefinition* atmosphere = getDefinition();
double sun_angle = (atmosphere->propDayTime()->getValue() + 0.75) * M_PI * 2.0;
return Vector3(cos(sun_angle), sin(sun_angle), 0.0);
}
bool BaseAtmosphereRenderer::getLightsAt(std::vector<LightComponent> &, const Vector3 &) const
{
return false;
}
AtmosphereDefinition* BaseAtmosphereRenderer::getDefinition() const
{
return parent->getScenery()->getAtmosphere();
}
SoftwareBrunetonAtmosphereRenderer::SoftwareBrunetonAtmosphereRenderer(SoftwareRenderer* renderer):
BaseAtmosphereRenderer(renderer)
{
model = new AtmosphereModelBruneton(parent);
}
SoftwareBrunetonAtmosphereRenderer::~SoftwareBrunetonAtmosphereRenderer()
{
delete model;
}
AtmosphereResult SoftwareBrunetonAtmosphereRenderer::applyAerialPerspective(Vector3 location, Color base)
{
AtmosphereDefinition* definition = getDefinition();
AtmosphereResult result;
// Get base perspective
switch (definition->model)
{
case AtmosphereDefinition::ATMOSPHERE_MODEL_BRUNETON:
result = model->applyAerialPerspective(location, base);
break;
default:
;
}
// Apply god rays ponderation
result.inscattering = parent->getGodRaysSampler()->apply(COLOR_BLACK, result.inscattering, location);
// Apply weather effects
_applyWeatherEffects(definition, &result);
return result;
}
AtmosphereResult SoftwareBrunetonAtmosphereRenderer::getSkyColor(Vector3 direction)
{
AtmosphereDefinition* definition;
Vector3 sun_direction, sun_position, camera_location;
Color base;
definition = getDefinition();
camera_location = parent->getCameraLocation(VECTOR_ZERO);
sun_direction = getSunDirection();
direction = direction.normalize();
sun_position = sun_direction.scale(SUN_DISTANCE_SCALED);
base = COLOR_BLACK;
// Get night sky
base = base.add(parent->getNightSky()->getColor(camera_location.y, direction));
// Get sun shape
/*if (v3Dot(sun_direction, direction) >= 0)
{
double sun_radius = definition->sun_radius * SUN_RADIUS_SCALED * 5.0; // FIXME Why should we multiply by 5 ?
Vector3 hit1, hit2;
int hits = euclidRayIntersectSphere(camera_location, direction, sun_position, sun_radius, &hit1, &hit2);
if (hits > 1)
{
double dist = v3Norm(v3Sub(hit2, hit1)) / sun_radius; // distance between intersection points (relative to radius)
Color sun_color = definition->sun_color;
sun_color.r *= 100.0;
sun_color.g *= 100.0;
sun_color.b *= 100.0;
if (dist <= 0.05)
{
sun_color.r *= 1.0 - dist / 0.05;
sun_color.g *= 1.0 - dist / 0.05;
sun_color.b *= 1.0 - dist / 0.05;
}
base = sun_color;
}
}*/
// Get scattering
AtmosphereResult result;
Vector3 location = camera_location.add(direction.scale(6421.0));
switch (definition->model)
{
case AtmosphereDefinition::ATMOSPHERE_MODEL_BRUNETON:
result = model->getSkyColor(camera_location, direction, sun_position, base);
break;
default:
result = BaseAtmosphereRenderer::applyAerialPerspective(location, result.base);
}
// Apply god rays ponderation
result.inscattering = parent->getGodRaysSampler()->apply(COLOR_BLACK, result.inscattering, location);
// Apply weather effects
_applyWeatherEffects(definition, &result);
return result;
}
bool SoftwareBrunetonAtmosphereRenderer::getLightsAt(std::vector<LightComponent> &result, const Vector3 &location) const
{
bool changed = false;
changed |= model->getLightsAt(result, location);
changed |= parent->getNightSky()->getLightsAt(result, location);
return changed;
}