158 lines
5.9 KiB
GLSL
158 lines
5.9 KiB
GLSL
/**
|
|
* Precomputed Atmospheric Scattering
|
|
* Copyright (c) 2008 INRIA
|
|
* All rights reserved.
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
* 1. Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* 2. Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in the
|
|
* documentation and/or other materials provided with the distribution.
|
|
* 3. Neither the name of the copyright holders nor the names of its
|
|
* contributors may be used to endorse or promote products derived from
|
|
* this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
* AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
* ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
* LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
* CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
* SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
* INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
* CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
* ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
|
|
* THE POSSIBILITY OF SUCH DAMAGE.
|
|
*/
|
|
|
|
/**
|
|
* Author: Eric Bruneton
|
|
*/
|
|
|
|
// computes deltaJ (line 7 in algorithm 4.1)
|
|
|
|
uniform float r;
|
|
uniform vec4 dhdH;
|
|
uniform int layer;
|
|
|
|
uniform sampler2D deltaESampler;
|
|
uniform sampler3D deltaSRSampler;
|
|
uniform sampler3D deltaSMSampler;
|
|
uniform float first;
|
|
|
|
#ifdef _VERTEX_
|
|
|
|
void main() {
|
|
gl_Position = gl_Vertex;
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef _GEOMETRY_
|
|
#extension GL_EXT_geometry_shader4 : enable
|
|
|
|
void main() {
|
|
gl_Position = gl_PositionIn[0];
|
|
gl_Layer = layer;
|
|
EmitVertex();
|
|
gl_Position = gl_PositionIn[1];
|
|
gl_Layer = layer;
|
|
EmitVertex();
|
|
gl_Position = gl_PositionIn[2];
|
|
gl_Layer = layer;
|
|
EmitVertex();
|
|
EndPrimitive();
|
|
}
|
|
|
|
#endif
|
|
|
|
#ifdef _FRAGMENT_
|
|
|
|
const float dphi = M_PI / float(INSCATTER_SPHERICAL_INTEGRAL_SAMPLES);
|
|
const float dtheta = M_PI / float(INSCATTER_SPHERICAL_INTEGRAL_SAMPLES);
|
|
|
|
void inscatter(float r, float mu, float muS, float nu, out vec3 raymie) {
|
|
r = clamp(r, Rg, Rt);
|
|
mu = clamp(mu, -1.0, 1.0);
|
|
muS = clamp(muS, -1.0, 1.0);
|
|
float var = sqrt(1.0 - mu * mu) * sqrt(1.0 - muS * muS);
|
|
nu = clamp(nu, muS * mu - var, muS * mu + var);
|
|
|
|
float cthetamin = -sqrt(1.0 - (Rg / r) * (Rg / r));
|
|
|
|
vec3 v = vec3(sqrt(1.0 - mu * mu), 0.0, mu);
|
|
float sx = v.x == 0.0 ? 0.0 : (nu - muS * mu) / v.x;
|
|
vec3 s = vec3(sx, sqrt(max(0.0, 1.0 - sx * sx - muS * muS)), muS);
|
|
|
|
raymie = vec3(0.0);
|
|
|
|
// integral over 4.PI around x with two nested loops over w directions (theta,phi) -- Eq (7)
|
|
for (int itheta = 0; itheta < INSCATTER_SPHERICAL_INTEGRAL_SAMPLES; ++itheta) {
|
|
float theta = (float(itheta) + 0.5) * dtheta;
|
|
float ctheta = cos(theta);
|
|
|
|
float greflectance = 0.0;
|
|
float dground = 0.0;
|
|
vec3 gtransp = vec3(0.0);
|
|
if (ctheta < cthetamin) { // if ground visible in direction w
|
|
// compute transparency gtransp between x and ground
|
|
greflectance = AVERAGE_GROUND_REFLECTANCE / M_PI;
|
|
dground = -r * ctheta - sqrt(r * r * (ctheta * ctheta - 1.0) + Rg * Rg);
|
|
gtransp = transmittance(Rg, -(r * ctheta + dground) / Rg, dground);
|
|
}
|
|
|
|
for (int iphi = 0; iphi < 2 * INSCATTER_SPHERICAL_INTEGRAL_SAMPLES; ++iphi) {
|
|
float phi = (float(iphi) + 0.5) * dphi;
|
|
float dw = dtheta * dphi * sin(theta);
|
|
vec3 w = vec3(cos(phi) * sin(theta), sin(phi) * sin(theta), ctheta);
|
|
|
|
float nu1 = dot(s, w);
|
|
float nu2 = dot(v, w);
|
|
float pr2 = phaseFunctionR(nu2);
|
|
float pm2 = phaseFunctionM(nu2);
|
|
|
|
// compute irradiance received at ground in direction w (if ground visible) =deltaE
|
|
vec3 gnormal = (vec3(0.0, 0.0, r) + dground * w) / Rg;
|
|
vec3 girradiance = irradiance(deltaESampler, Rg, dot(gnormal, s));
|
|
|
|
vec3 raymie1; // light arriving at x from direction w
|
|
|
|
// first term = light reflected from the ground and attenuated before reaching x, =T.alpha/PI.deltaE
|
|
raymie1 = greflectance * girradiance * gtransp;
|
|
|
|
// second term = inscattered light, =deltaS
|
|
if (first == 1.0) {
|
|
// first iteration is special because Rayleigh and Mie were stored separately,
|
|
// without the phase functions factors; they must be reintroduced here
|
|
float pr1 = phaseFunctionR(nu1);
|
|
float pm1 = phaseFunctionM(nu1);
|
|
vec3 ray1 = texture4D(deltaSRSampler, r, w.z, muS, nu1).rgb;
|
|
vec3 mie1 = texture4D(deltaSMSampler, r, w.z, muS, nu1).rgb;
|
|
raymie1 += ray1 * pr1 + mie1 * pm1;
|
|
} else {
|
|
raymie1 += texture4D(deltaSRSampler, r, w.z, muS, nu1).rgb;
|
|
}
|
|
|
|
// light coming from direction w and scattered in direction v
|
|
// = light arriving at x from direction w (raymie1) * SUM(scattering coefficient * phaseFunction)
|
|
// see Eq (7)
|
|
raymie += raymie1 * (betaR * exp(-(r - Rg) / HR) * pr2 + betaMSca * exp(-(r - Rg) / HM) * pm2) * dw;
|
|
}
|
|
}
|
|
|
|
// output raymie = J[T.alpha/PI.deltaE + deltaS] (line 7 in algorithm 4.1)
|
|
}
|
|
|
|
void main() {
|
|
vec3 raymie;
|
|
float mu, muS, nu;
|
|
getMuMuSNu(r, dhdH, mu, muS, nu);
|
|
inscatter(r, mu, muS, nu, raymie);
|
|
gl_FragColor.rgb = raymie;
|
|
}
|
|
|
|
#endif
|
|
|