Michaël Lemaire
960847ebf9
git-svn-id: https://subversion.assembla.com/svn/thunderk/paysages@427 b1fd45b6-86a6-48da-8261-f70d1f35bdcc
189 lines
3.5 KiB
C
189 lines
3.5 KiB
C
#include "noisesimplex.h"
|
|
|
|
/*
|
|
* Perlin noise implementation.
|
|
*
|
|
* Based on Ken Perlin implementation.
|
|
*/
|
|
|
|
#include <stdlib.h>
|
|
#include <math.h>
|
|
#include <string.h>
|
|
|
|
#include <stdlib.h>
|
|
#include <stdio.h>
|
|
#include <math.h>
|
|
|
|
#define B 0x100
|
|
#define BM 0xff
|
|
|
|
#define N 0x1000
|
|
#define NP 12 /* 2^N */
|
|
#define NM 0xfff
|
|
|
|
static int p[B + B + 2];
|
|
static double g3[B + B + 2][3];
|
|
static double g2[B + B + 2][2];
|
|
static double g1[B + B + 2];
|
|
|
|
#define s_curve(t) ( t * t * (3. - 2. * t) )
|
|
|
|
#define lerp(t, a, b) ( a + t * (b - a) )
|
|
|
|
#define setup(i,b0,b1,r0,r1)\
|
|
t = vec[i] + N;\
|
|
b0 = ((int)t) & BM;\
|
|
b1 = (b0+1) & BM;\
|
|
r0 = t - (int)t;\
|
|
r1 = r0 - 1.;
|
|
|
|
double noisePerlinGet1DValue(double x)
|
|
{
|
|
double vec[1] = {x};
|
|
int bx0, bx1;
|
|
double rx0, rx1, sx, t, u, v;
|
|
|
|
setup(0, bx0,bx1, rx0,rx1);
|
|
|
|
sx = s_curve(rx0);
|
|
|
|
u = rx0 * g1[ p[ bx0 ] ];
|
|
v = rx1 * g1[ p[ bx1 ] ];
|
|
|
|
return lerp(sx, u, v);
|
|
}
|
|
|
|
double noisePerlinGet2DValue(double x, double y)
|
|
{
|
|
double vec[2] = {x, y};
|
|
int bx0, bx1, by0, by1, b00, b10, b01, b11;
|
|
double rx0, rx1, ry0, ry1, *q, sx, sy, a, b, t, u, v;
|
|
int i, j;
|
|
|
|
setup(0, bx0,bx1, rx0,rx1);
|
|
setup(1, by0,by1, ry0,ry1);
|
|
|
|
i = p[ bx0 ];
|
|
j = p[ bx1 ];
|
|
|
|
b00 = p[ i + by0 ];
|
|
b10 = p[ j + by0 ];
|
|
b01 = p[ i + by1 ];
|
|
b11 = p[ j + by1 ];
|
|
|
|
sx = s_curve(rx0);
|
|
sy = s_curve(ry0);
|
|
|
|
#define at2(rx,ry) ( rx * q[0] + ry * q[1] )
|
|
|
|
q = g2[ b00 ] ; u = at2(rx0,ry0);
|
|
q = g2[ b10 ] ; v = at2(rx1,ry0);
|
|
a = lerp(sx, u, v);
|
|
|
|
q = g2[ b01 ] ; u = at2(rx0,ry1);
|
|
q = g2[ b11 ] ; v = at2(rx1,ry1);
|
|
b = lerp(sx, u, v);
|
|
|
|
return lerp(sy, a, b);
|
|
}
|
|
|
|
double noisePerlinGet3DValue(double x, double y, double z)
|
|
{
|
|
double vec[3] = {x, y, z};
|
|
int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
|
|
double rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
|
|
int i, j;
|
|
|
|
setup(0, bx0,bx1, rx0,rx1);
|
|
setup(1, by0,by1, ry0,ry1);
|
|
setup(2, bz0,bz1, rz0,rz1);
|
|
|
|
i = p[ bx0 ];
|
|
j = p[ bx1 ];
|
|
|
|
b00 = p[ i + by0 ];
|
|
b10 = p[ j + by0 ];
|
|
b01 = p[ i + by1 ];
|
|
b11 = p[ j + by1 ];
|
|
|
|
t = s_curve(rx0);
|
|
sy = s_curve(ry0);
|
|
sz = s_curve(rz0);
|
|
|
|
#define at3(rx,ry,rz) ( rx * q[0] + ry * q[1] + rz * q[2] )
|
|
|
|
q = g3[ b00 + bz0 ] ; u = at3(rx0,ry0,rz0);
|
|
q = g3[ b10 + bz0 ] ; v = at3(rx1,ry0,rz0);
|
|
a = lerp(t, u, v);
|
|
|
|
q = g3[ b01 + bz0 ] ; u = at3(rx0,ry1,rz0);
|
|
q = g3[ b11 + bz0 ] ; v = at3(rx1,ry1,rz0);
|
|
b = lerp(t, u, v);
|
|
|
|
c = lerp(sy, a, b);
|
|
|
|
q = g3[ b00 + bz1 ] ; u = at3(rx0,ry0,rz1);
|
|
q = g3[ b10 + bz1 ] ; v = at3(rx1,ry0,rz1);
|
|
a = lerp(t, u, v);
|
|
|
|
q = g3[ b01 + bz1 ] ; u = at3(rx0,ry1,rz1);
|
|
q = g3[ b11 + bz1 ] ; v = at3(rx1,ry1,rz1);
|
|
b = lerp(t, u, v);
|
|
|
|
d = lerp(sy, a, b);
|
|
|
|
return lerp(sz, c, d);
|
|
}
|
|
|
|
static void _normalize2(double v[2])
|
|
{
|
|
double s;
|
|
|
|
s = sqrt(v[0] * v[0] + v[1] * v[1]);
|
|
v[0] = v[0] / s;
|
|
v[1] = v[1] / s;
|
|
}
|
|
|
|
static void _normalize3(double v[3])
|
|
{
|
|
double s;
|
|
|
|
s = sqrt(v[0] * v[0] + v[1] * v[1] + v[2] * v[2]);
|
|
v[0] = v[0] / s;
|
|
v[1] = v[1] / s;
|
|
v[2] = v[2] / s;
|
|
}
|
|
|
|
void noisePerlinInit(void)
|
|
{
|
|
int i, j, k;
|
|
|
|
for (i = 0 ; i < B ; i++) {
|
|
p[i] = i;
|
|
|
|
g1[i] = (double)((random() % (B + B)) - B) / B;
|
|
|
|
for (j = 0 ; j < 2 ; j++)
|
|
g2[i][j] = (double)((random() % (B + B)) - B) / B;
|
|
_normalize2(g2[i]);
|
|
|
|
for (j = 0 ; j < 3 ; j++)
|
|
g3[i][j] = (double)((random() % (B + B)) - B) / B;
|
|
_normalize3(g3[i]);
|
|
}
|
|
|
|
while (--i) {
|
|
k = p[i];
|
|
p[i] = p[j = random() % B];
|
|
p[j] = k;
|
|
}
|
|
|
|
for (i = 0 ; i < B + 2 ; i++) {
|
|
p[B + i] = p[i];
|
|
g1[B + i] = g1[i];
|
|
for (j = 0 ; j < 2 ; j++)
|
|
g2[B + i][j] = g2[i][j];
|
|
for (j = 0 ; j < 3 ; j++)
|
|
g3[B + i][j] = g3[i][j];
|
|
}
|
|
}
|