paysages3d/src/render/software/CloudBasicLayerRenderer.cpp

306 lines
10 KiB
C++

#include "CloudBasicLayerRenderer.h"
#include "CloudLayerDefinition.h"
#include "SoftwareRenderer.h"
#include "NoiseGenerator.h"
#include "Curve.h"
#include "AtmosphereRenderer.h"
typedef struct
{
Vector3 start;
Vector3 end;
double length;
} CloudSegment;
CloudBasicLayerRenderer::CloudBasicLayerRenderer(SoftwareRenderer* parent):
BaseCloudLayerRenderer(parent)
{
}
static inline double _standardCoverageFunc(CloudLayerDefinition* layer, Vector3 position)
{
if (position.y < layer->lower_altitude || position.y > (layer->lower_altitude + layer->thickness))
{
return 0.0;
}
else
{
return layer->base_coverage * layer->_coverage_by_altitude->getValue((position.y - layer->lower_altitude) / layer->thickness);
}
}
static inline double _getDistanceToBorder(CloudLayerDefinition* layer, Vector3 position)
{
double val;
double minval, maxval;
layer->_shape_noise->getRange(&minval, &maxval);
val = 0.5 * layer->_shape_noise->get3DTotal(position.x / layer->shape_scaling, position.y / layer->shape_scaling, position.z / layer->shape_scaling) / maxval;
return (val - 0.5 + _standardCoverageFunc(layer, position)) * layer->shape_scaling;
}
static inline Vector3 _getNormal(CloudLayerDefinition* layer, Vector3 position, double detail)
{
Vector3 result = {0.0, 0.0, 0.0};
Vector3 dposition;
double val, dval;
val = _getDistanceToBorder(layer, position);
dposition.x = position.x + detail;
dposition.y = position.y;
dposition.z = position.z;
dval = val - _getDistanceToBorder(layer, dposition);
result.x += dval;
dposition.x = position.x - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.x -= dval;
dposition.x = position.x;
dposition.y = position.y + detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.y += dval;
dposition.y = position.y - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.y -= dval;
dposition.y = position.y;
dposition.z = position.z + detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.z += dval;
dposition.z = position.z - detail;
dval = val - _getDistanceToBorder(layer, dposition);
result.z -= dval;
return v3Normalize(result);
}
/**
* Go through the cloud layer to find segments (parts of the lookup that are inside the cloud).
*
* @param definition The cloud layer
* @param renderer The renderer environment
* @param start Start position of the lookup (already optimized)
* @param direction Normalized direction of the lookup
* @param detail Level of noise detail required
* @param max_segments Maximum number of segments to collect
* @param max_inside_length Maximum length to spend inside the cloud
* @param max_total_length Maximum lookup length
* @param inside_length Resulting length inside cloud (sum of all segments length)
* @param total_length Resulting lookup length
* @param out_segments Allocated space to fill found segments
* @return Number of segments found
*/
static int _findSegments(CloudLayerDefinition* definition, SoftwareRenderer* renderer, Vector3 start, Vector3 direction, double, int max_segments, double max_inside_length, double max_total_length, double* inside_length, double* total_length, CloudSegment* out_segments)
{
int inside, segment_count;
double current_total_length, current_inside_length;
double step_length, segment_length, remaining_length;
double noise_distance, last_noise_distance;
Vector3 walker, step, segment_start;
double render_precision;
if (max_segments <= 0)
{
return 0;
}
render_precision = 15.2 - 1.5 * (double)renderer->render_quality;
render_precision = render_precision * definition->shape_scaling / 50.0;
if (render_precision > max_total_length / 10.0)
{
render_precision = max_total_length / 10.0;
}
else if (render_precision < max_total_length / 2000.0)
{
render_precision = max_total_length / 2000.0;
}
segment_count = 0;
current_total_length = 0.0;
current_inside_length = 0.0;
segment_length = 0.0;
walker = start;
noise_distance = _getDistanceToBorder(definition, start) * render_precision;
inside = (noise_distance > 0.0) ? 1 : 0;
step = v3Scale(direction, render_precision);
do
{
walker = v3Add(walker, step);
step_length = v3Norm(step);
last_noise_distance = noise_distance;
noise_distance = _getDistanceToBorder(definition, walker) * render_precision;
current_total_length += step_length;
if (noise_distance > 0.0)
{
if (inside)
{
// inside the cloud
segment_length += step_length;
current_inside_length += step_length;
step = v3Scale(direction, (noise_distance < render_precision) ? render_precision : noise_distance);
}
else
{
// entering the cloud
inside = 1;
segment_length = step_length * noise_distance / (noise_distance - last_noise_distance);
segment_start = v3Add(walker, v3Scale(direction, -segment_length));
current_inside_length += segment_length;
step = v3Scale(direction, render_precision);
}
}
else
{
if (inside)
{
// exiting the cloud
remaining_length = step_length * last_noise_distance / (last_noise_distance - noise_distance);
segment_length += remaining_length;
current_inside_length += remaining_length;
out_segments->start = segment_start;
out_segments->end = v3Add(walker, v3Scale(direction, remaining_length - step_length));
out_segments->length = segment_length;
out_segments++;
if (++segment_count >= max_segments)
{
break;
}
inside = 0;
step = v3Scale(direction, render_precision);
}
else
{
// searching for a cloud
step = v3Scale(direction, (noise_distance > -render_precision) ? render_precision : -noise_distance);
}
}
} while (inside || (walker.y >= definition->lower_altitude - 0.001 && walker.y <= (definition->lower_altitude + definition->thickness) + 0.001 && current_total_length < max_total_length && current_inside_length < max_inside_length));
*total_length = current_total_length;
*inside_length = current_inside_length;
return segment_count;
}
static Color _applyLayerLighting(CloudLayerDefinition* definition, SoftwareRenderer* renderer, Vector3 position, double)
{
Vector3 normal;
Color col1, col2;
normal = _getNormal(definition, position, 3.0);
if (renderer->render_quality > 5)
{
normal = v3Add(normal, _getNormal(definition, position, 2.0));
normal = v3Add(normal, _getNormal(definition, position, 1.0));
}
if (renderer->render_quality > 5)
{
normal = v3Add(normal, _getNormal(definition, position, 0.5));
}
normal = v3Scale(v3Normalize(normal), definition->hardness);
// TODO Compute light filter only once
col1 = renderer->applyLightingToSurface(renderer, position, normal, definition->material);
col2 = renderer->applyLightingToSurface(renderer, position, v3Scale(normal, -1.0), definition->material);
col1.r = (col1.r + col2.r) / 2.0;
col1.g = (col1.g + col2.g) / 2.0;
col1.b = (col1.b + col2.b) / 2.0;
col1.a = (col1.a + col2.a) / 2.0;
return col1;
}
double CloudBasicLayerRenderer::getDensity(CloudLayerDefinition* layer, const Vector3 &location)
{
return 0.0;
}
Color CloudBasicLayerRenderer::getColor(CloudLayerDefinition* layer, const Vector3 &eye, const Vector3 &location)
{
int i, segment_count;
double max_length, detail, total_length, inside_length;
Vector3 start, end, direction;
Color result, col;
CloudSegment segments[20];
start = eye;
end = location;
if (!optimizeSearchLimits(layer, &start, &end))
{
return COLOR_TRANSPARENT;
}
direction = end.sub(start);
max_length = direction.getNorm();
direction = direction.normalize();
result = COLOR_TRANSPARENT;
detail = parent->getPrecision(parent, start) / layer->shape_scaling;
segment_count = _findSegments(layer, parent, start, direction, detail, 20, layer->transparencydepth, max_length, &inside_length, &total_length, segments);
for (i = segment_count - 1; i >= 0; i--)
{
col = _applyLayerLighting(layer, parent, segments[i].start, detail);
col.a = (segments[i].length >= layer->transparencydepth) ? 1.0 : (segments[i].length / layer->transparencydepth);
colorMask(&result, &col);
}
if (inside_length >= layer->transparencydepth)
{
result.a = 1.0;
}
double a = result.a;
result = parent->getAtmosphereRenderer()->applyAerialPerspective(start, result).final;
result.a = a;
return result;
}
bool CloudBasicLayerRenderer::alterLight(CloudLayerDefinition* layer, LightDefinition* light, const Vector3 &, const Vector3 &location)
{
Vector3 start, end;
double inside_depth, total_depth, factor;
CloudSegment segments[20];
start = location;
end = location.add(light->direction.scale(10000.0));
if (not optimizeSearchLimits(layer, &start, &end))
{
return false;
}
_findSegments(layer, parent, start, light->direction, 0.1, 20, layer->lighttraversal, end.sub(start).getNorm(), &inside_depth, &total_depth, segments);
if (layer->lighttraversal < 0.0001)
{
factor = 0.0;
}
else
{
factor = inside_depth / layer->lighttraversal;
if (factor > 1.0)
{
factor = 1.0;
}
}
factor = 1.0 - (1.0 - layer->minimumlight) * factor;
light->color.r *= factor;
light->color.g *= factor;
light->color.b *= factor;
return true;
}