Optimized NoiseFunctionSimplex by inlining
This causes duplicated code, but it should be removed when NoiseGenerator is not used anymore
This commit is contained in:
parent
09697e0d5e
commit
32c83c1b36
1 changed files with 182 additions and 2 deletions
|
@ -141,6 +141,7 @@ double noiseSimplexGet1DValue(double x) {
|
||||||
}
|
}
|
||||||
|
|
||||||
double noiseSimplexGet2DValue(double x, double y) {
|
double noiseSimplexGet2DValue(double x, double y) {
|
||||||
|
// FIXME duplicated
|
||||||
double n0, n1, n2; /* Noise contributions from the three corners */
|
double n0, n1, n2; /* Noise contributions from the three corners */
|
||||||
/* Skew the input space to determine which simplex cell we're in */
|
/* Skew the input space to determine which simplex cell we're in */
|
||||||
double s = (x + y) * _F2; /* Hairy factor for 2D */
|
double s = (x + y) * _F2; /* Hairy factor for 2D */
|
||||||
|
@ -203,6 +204,7 @@ double noiseSimplexGet2DValue(double x, double y) {
|
||||||
}
|
}
|
||||||
|
|
||||||
double noiseSimplexGet3DValue(double x, double y, double z) {
|
double noiseSimplexGet3DValue(double x, double y, double z) {
|
||||||
|
// FIXME duplicated
|
||||||
double n0, n1, n2, n3; /* Noise contributions from the four corners */
|
double n0, n1, n2, n3; /* Noise contributions from the four corners */
|
||||||
/* Skew the input space to determine which simplex cell we're in */
|
/* Skew the input space to determine which simplex cell we're in */
|
||||||
double s = (x + y + z) * _F3; /* Very nice and simple skew factor for 3D */
|
double s = (x + y + z) * _F3; /* Very nice and simple skew factor for 3D */
|
||||||
|
@ -469,11 +471,189 @@ double noiseSimplexGet4DValue(double x, double y, double z, double w) {
|
||||||
}
|
}
|
||||||
|
|
||||||
double NoiseFunctionSimplex::getBase2d(double x, double y) const {
|
double NoiseFunctionSimplex::getBase2d(double x, double y) const {
|
||||||
return noiseSimplexGet2DValue(x, y) - 0.5;
|
double n0, n1, n2; /* Noise contributions from the three corners */
|
||||||
|
/* Skew the input space to determine which simplex cell we're in */
|
||||||
|
double s = (x + y) * _F2; /* Hairy factor for 2D */
|
||||||
|
int i = _fastfloor(x + s);
|
||||||
|
int j = _fastfloor(y + s);
|
||||||
|
double t = (i + j) * _G2;
|
||||||
|
double X0 = i - t; /* Unskew the cell origin back to (x,y) space */
|
||||||
|
double Y0 = j - t;
|
||||||
|
double x0 = x - X0; /* The x,y distances from the cell origin */
|
||||||
|
double y0 = y - Y0;
|
||||||
|
/* For the 2D case, the simplex shape is an equilateral triangle.
|
||||||
|
Determine which simplex we are in. */
|
||||||
|
int i1, j1; /* Offsets for second (middle) corner of simplex in (i,j) coords */
|
||||||
|
if (x0 > y0) {
|
||||||
|
i1 = 1;
|
||||||
|
j1 = 0;
|
||||||
|
} /* lower triangle, XY order: (0,0)->(1,0)->(1,1) */
|
||||||
|
else {
|
||||||
|
i1 = 0;
|
||||||
|
j1 = 1;
|
||||||
|
} /* upper triangle, YX order: (0,0)->(0,1)->(1,1) */
|
||||||
|
/* A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
||||||
|
a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
||||||
|
c = (3-sqrt(3))/6 */
|
||||||
|
double x1 = x0 - i1 + _G2; /* Offsets for middle corner in (x,y) unskewed coords */
|
||||||
|
double y1 = y0 - j1 + _G2;
|
||||||
|
double x2 = x0 - 1.0 + 2.0 * _G2; /* Offsets for last corner in (x,y) unskewed coords */
|
||||||
|
double y2 = y0 - 1.0 + 2.0 * _G2;
|
||||||
|
/* Work out the hashed gradient indices of the three simplex corners */
|
||||||
|
int ii = i & 255;
|
||||||
|
int jj = j & 255;
|
||||||
|
int gi0 = _permutationsMod12[ii + _permutations2[jj]];
|
||||||
|
int gi1 = _permutationsMod12[ii + i1 + _permutations2[jj + j1]];
|
||||||
|
int gi2 = _permutationsMod12[ii + 1 + _permutations2[jj + 1]];
|
||||||
|
/* Calculate the contribution from the three corners */
|
||||||
|
double t0 = 0.5 - x0 * x0 - y0 * y0;
|
||||||
|
if (t0 < 0)
|
||||||
|
n0 = 0.0;
|
||||||
|
else {
|
||||||
|
t0 *= t0;
|
||||||
|
n0 = t0 * t0 * _dot2(_grad3[gi0], x0, y0); /* (x,y) of _grad3 used for 2D gradient */
|
||||||
|
}
|
||||||
|
double t1 = 0.5 - x1 * x1 - y1 * y1;
|
||||||
|
if (t1 < 0)
|
||||||
|
n1 = 0.0;
|
||||||
|
else {
|
||||||
|
t1 *= t1;
|
||||||
|
n1 = t1 * t1 * _dot2(_grad3[gi1], x1, y1);
|
||||||
|
}
|
||||||
|
double t2 = 0.5 - x2 * x2 - y2 * y2;
|
||||||
|
if (t2 < 0)
|
||||||
|
n2 = 0.0;
|
||||||
|
else {
|
||||||
|
t2 *= t2;
|
||||||
|
n2 = t2 * t2 * _dot2(_grad3[gi2], x2, y2);
|
||||||
|
}
|
||||||
|
/* Add contributions from each corner to get the final noise value.
|
||||||
|
The result is scaled to return values in the interval [-0.5,0.5]. */
|
||||||
|
return 35.0 * (n0 + n1 + n2);
|
||||||
}
|
}
|
||||||
|
|
||||||
double NoiseFunctionSimplex::getBase3d(double x, double y, double z) const {
|
double NoiseFunctionSimplex::getBase3d(double x, double y, double z) const {
|
||||||
return noiseSimplexGet3DValue(x, y, z) - 0.5;
|
double n0, n1, n2, n3; /* Noise contributions from the four corners */
|
||||||
|
/* Skew the input space to determine which simplex cell we're in */
|
||||||
|
double s = (x + y + z) * _F3; /* Very nice and simple skew factor for 3D */
|
||||||
|
int i = _fastfloor(x + s);
|
||||||
|
int j = _fastfloor(y + s);
|
||||||
|
int k = _fastfloor(z + s);
|
||||||
|
double t = (i + j + k) * _G3;
|
||||||
|
double X0 = i - t; /* Unskew the cell origin back to (x,y,z) space */
|
||||||
|
double Y0 = j - t;
|
||||||
|
double Z0 = k - t;
|
||||||
|
double x0 = x - X0; /* The x,y,z distances from the cell origin */
|
||||||
|
double y0 = y - Y0;
|
||||||
|
double z0 = z - Z0;
|
||||||
|
/* For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
||||||
|
Determine which simplex we are in. */
|
||||||
|
int i1, j1, k1; /* Offsets for second corner of simplex in (i,j,k) coords */
|
||||||
|
int i2, j2, k2; /* Offsets for third corner of simplex in (i,j,k) coords */
|
||||||
|
if (x0 >= y0) {
|
||||||
|
if (y0 >= z0) {
|
||||||
|
i1 = 1;
|
||||||
|
j1 = 0;
|
||||||
|
k1 = 0;
|
||||||
|
i2 = 1;
|
||||||
|
j2 = 1;
|
||||||
|
k2 = 0;
|
||||||
|
} /* X Y Z order */
|
||||||
|
else if (x0 >= z0) {
|
||||||
|
i1 = 1;
|
||||||
|
j1 = 0;
|
||||||
|
k1 = 0;
|
||||||
|
i2 = 1;
|
||||||
|
j2 = 0;
|
||||||
|
k2 = 1;
|
||||||
|
} /* X Z Y order */
|
||||||
|
else {
|
||||||
|
i1 = 0;
|
||||||
|
j1 = 0;
|
||||||
|
k1 = 1;
|
||||||
|
i2 = 1;
|
||||||
|
j2 = 0;
|
||||||
|
k2 = 1;
|
||||||
|
} /* Z X Y order */
|
||||||
|
} else { /* x0<y0 */
|
||||||
|
if (y0 < z0) {
|
||||||
|
i1 = 0;
|
||||||
|
j1 = 0;
|
||||||
|
k1 = 1;
|
||||||
|
i2 = 0;
|
||||||
|
j2 = 1;
|
||||||
|
k2 = 1;
|
||||||
|
} /* Z Y X order */
|
||||||
|
else if (x0 < z0) {
|
||||||
|
i1 = 0;
|
||||||
|
j1 = 1;
|
||||||
|
k1 = 0;
|
||||||
|
i2 = 0;
|
||||||
|
j2 = 1;
|
||||||
|
k2 = 1;
|
||||||
|
} /* Y Z X order */
|
||||||
|
else {
|
||||||
|
i1 = 0;
|
||||||
|
j1 = 1;
|
||||||
|
k1 = 0;
|
||||||
|
i2 = 1;
|
||||||
|
j2 = 1;
|
||||||
|
k2 = 0;
|
||||||
|
} /* Y X Z order */
|
||||||
|
}
|
||||||
|
/* A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
||||||
|
a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
||||||
|
a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
||||||
|
c = 1/6. */
|
||||||
|
double x1 = x0 - i1 + _G3; /* Offsets for second corner in (x,y,z) coords */
|
||||||
|
double y1 = y0 - j1 + _G3;
|
||||||
|
double z1 = z0 - k1 + _G3;
|
||||||
|
double x2 = x0 - i2 + 2.0 * _G3; /* Offsets for third corner in (x,y,z) coords */
|
||||||
|
double y2 = y0 - j2 + 2.0 * _G3;
|
||||||
|
double z2 = z0 - k2 + 2.0 * _G3;
|
||||||
|
double x3 = x0 - 1.0 + 3.0 * _G3; /* Offsets for last corner in (x,y,z) coords */
|
||||||
|
double y3 = y0 - 1.0 + 3.0 * _G3;
|
||||||
|
double z3 = z0 - 1.0 + 3.0 * _G3;
|
||||||
|
/* Work out the hashed gradient indices of the four simplex corners */
|
||||||
|
int ii = i & 255;
|
||||||
|
int jj = j & 255;
|
||||||
|
int kk = k & 255;
|
||||||
|
int gi0 = _permutationsMod12[ii + _permutations2[jj + _permutations2[kk]]];
|
||||||
|
int gi1 = _permutationsMod12[ii + i1 + _permutations2[jj + j1 + _permutations2[kk + k1]]];
|
||||||
|
int gi2 = _permutationsMod12[ii + i2 + _permutations2[jj + j2 + _permutations2[kk + k2]]];
|
||||||
|
int gi3 = _permutationsMod12[ii + 1 + _permutations2[jj + 1 + _permutations2[kk + 1]]];
|
||||||
|
/* Calculate the contribution from the four corners */
|
||||||
|
double t0 = 0.6 - x0 * x0 - y0 * y0 - z0 * z0;
|
||||||
|
if (t0 < 0)
|
||||||
|
n0 = 0.0;
|
||||||
|
else {
|
||||||
|
t0 *= t0;
|
||||||
|
n0 = t0 * t0 * _dot3(_grad3[gi0], x0, y0, z0);
|
||||||
|
}
|
||||||
|
double t1 = 0.6 - x1 * x1 - y1 * y1 - z1 * z1;
|
||||||
|
if (t1 < 0)
|
||||||
|
n1 = 0.0;
|
||||||
|
else {
|
||||||
|
t1 *= t1;
|
||||||
|
n1 = t1 * t1 * _dot3(_grad3[gi1], x1, y1, z1);
|
||||||
|
}
|
||||||
|
double t2 = 0.6 - x2 * x2 - y2 * y2 - z2 * z2;
|
||||||
|
if (t2 < 0)
|
||||||
|
n2 = 0.0;
|
||||||
|
else {
|
||||||
|
t2 *= t2;
|
||||||
|
n2 = t2 * t2 * _dot3(_grad3[gi2], x2, y2, z2);
|
||||||
|
}
|
||||||
|
double t3 = 0.6 - x3 * x3 - y3 * y3 - z3 * z3;
|
||||||
|
if (t3 < 0)
|
||||||
|
n3 = 0.0;
|
||||||
|
else {
|
||||||
|
t3 *= t3;
|
||||||
|
n3 = t3 * t3 * _dot3(_grad3[gi3], x3, y3, z3);
|
||||||
|
}
|
||||||
|
/* Add contributions from each corner to get the final noise value.
|
||||||
|
The result is scaled to stay just inside [-0.5,0.5] */
|
||||||
|
return 16.0 * (n0 + n1 + n2 + n3);
|
||||||
}
|
}
|
||||||
|
|
||||||
static constexpr double TEXTURE_SCALING = 15.0;
|
static constexpr double TEXTURE_SCALING = 15.0;
|
||||||
|
|
Loading…
Reference in a new issue